Source file src/cmd/compile/internal/types2/lookup.go

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements various field and method lookup functions.
     6  
     7  package types2
     8  
     9  import "bytes"
    10  
    11  // LookupSelection selects the field or method whose ID is Id(pkg,
    12  // name), on a value of type T. If addressable is set, T is the type
    13  // of an addressable variable (this matters only for method lookups).
    14  // T must not be nil.
    15  //
    16  // If the selection is valid:
    17  //
    18  //   - [Selection.Obj] returns the field ([Var]) or method ([Func]);
    19  //   - [Selection.Indirect] reports whether there were any pointer
    20  //     indirections on the path to the field or method.
    21  //   - [Selection.Index] returns the index sequence, defined below.
    22  //
    23  // The last index entry is the field or method index in the (possibly
    24  // embedded) type where the entry was found, either:
    25  //
    26  //  1. the list of declared methods of a named type; or
    27  //  2. the list of all methods (method set) of an interface type; or
    28  //  3. the list of fields of a struct type.
    29  //
    30  // The earlier index entries are the indices of the embedded struct
    31  // fields traversed to get to the found entry, starting at depth 0.
    32  //
    33  // See also [LookupFieldOrMethod], which returns the components separately.
    34  func LookupSelection(T Type, addressable bool, pkg *Package, name string) (Selection, bool) {
    35  	obj, index, indirect := LookupFieldOrMethod(T, addressable, pkg, name)
    36  	var kind SelectionKind
    37  	switch obj.(type) {
    38  	case nil:
    39  		return Selection{}, false
    40  	case *Func:
    41  		kind = MethodVal
    42  	case *Var:
    43  		kind = FieldVal
    44  	default:
    45  		panic(obj) // can't happen
    46  	}
    47  	return Selection{kind, T, obj, index, indirect}, true
    48  }
    49  
    50  // Internal use of LookupFieldOrMethod: If the obj result is a method
    51  // associated with a concrete (non-interface) type, the method's signature
    52  // may not be fully set up. Call Checker.objDecl(obj, nil) before accessing
    53  // the method's type.
    54  
    55  // LookupFieldOrMethod looks up a field or method with given package and name
    56  // in T and returns the corresponding *Var or *Func, an index sequence, and a
    57  // bool indicating if there were any pointer indirections on the path to the
    58  // field or method. If addressable is set, T is the type of an addressable
    59  // variable (only matters for method lookups). T must not be nil.
    60  //
    61  // The last index entry is the field or method index in the (possibly embedded)
    62  // type where the entry was found, either:
    63  //
    64  //  1. the list of declared methods of a named type; or
    65  //  2. the list of all methods (method set) of an interface type; or
    66  //  3. the list of fields of a struct type.
    67  //
    68  // The earlier index entries are the indices of the embedded struct fields
    69  // traversed to get to the found entry, starting at depth 0.
    70  //
    71  // If no entry is found, a nil object is returned. In this case, the returned
    72  // index and indirect values have the following meaning:
    73  //
    74  //   - If index != nil, the index sequence points to an ambiguous entry
    75  //     (the same name appeared more than once at the same embedding level).
    76  //
    77  //   - If indirect is set, a method with a pointer receiver type was found
    78  //     but there was no pointer on the path from the actual receiver type to
    79  //     the method's formal receiver base type, nor was the receiver addressable.
    80  //
    81  // See also [LookupSelection], which returns the result as a [Selection].
    82  func LookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string) (obj Object, index []int, indirect bool) {
    83  	if T == nil {
    84  		panic("LookupFieldOrMethod on nil type")
    85  	}
    86  	return lookupFieldOrMethod(T, addressable, pkg, name, false)
    87  }
    88  
    89  // lookupFieldOrMethod is like LookupFieldOrMethod but with the additional foldCase parameter
    90  // (see Object.sameId for the meaning of foldCase).
    91  func lookupFieldOrMethod(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
    92  	// Methods cannot be associated to a named pointer type.
    93  	// (spec: "The type denoted by T is called the receiver base type;
    94  	// it must not be a pointer or interface type and it must be declared
    95  	// in the same package as the method.").
    96  	// Thus, if we have a named pointer type, proceed with the underlying
    97  	// pointer type but discard the result if it is a method since we would
    98  	// not have found it for T (see also go.dev/issue/8590).
    99  	if t := asNamed(T); t != nil {
   100  		if p, _ := t.Underlying().(*Pointer); p != nil {
   101  			obj, index, indirect = lookupFieldOrMethodImpl(p, false, pkg, name, foldCase)
   102  			if _, ok := obj.(*Func); ok {
   103  				return nil, nil, false
   104  			}
   105  			return
   106  		}
   107  	}
   108  
   109  	obj, index, indirect = lookupFieldOrMethodImpl(T, addressable, pkg, name, foldCase)
   110  
   111  	// If we didn't find anything and if we have a type parameter with a common underlying
   112  	// type, see if there is a matching field (but not a method, those need to be declared
   113  	// explicitly in the constraint). If the constraint is a named pointer type (see above),
   114  	// we are ok here because only fields are accepted as results.
   115  	const enableTParamFieldLookup = false // see go.dev/issue/51576
   116  	if enableTParamFieldLookup && obj == nil && isTypeParam(T) {
   117  		if t, _ := commonUnder(T, nil); t != nil {
   118  			obj, index, indirect = lookupFieldOrMethodImpl(t, addressable, pkg, name, foldCase)
   119  			if _, ok := obj.(*Var); !ok {
   120  				obj, index, indirect = nil, nil, false // accept fields (variables) only
   121  			}
   122  		}
   123  	}
   124  	return
   125  }
   126  
   127  // lookupFieldOrMethodImpl is the implementation of lookupFieldOrMethod.
   128  // Notably, in contrast to lookupFieldOrMethod, it won't find struct fields
   129  // in base types of defined (*Named) pointer types T. For instance, given
   130  // the declaration:
   131  //
   132  //	type T *struct{f int}
   133  //
   134  // lookupFieldOrMethodImpl won't find the field f in the defined (*Named) type T
   135  // (methods on T are not permitted in the first place).
   136  //
   137  // Thus, lookupFieldOrMethodImpl should only be called by lookupFieldOrMethod
   138  // and missingMethod (the latter doesn't care about struct fields).
   139  //
   140  // The resulting object may not be fully type-checked.
   141  func lookupFieldOrMethodImpl(T Type, addressable bool, pkg *Package, name string, foldCase bool) (obj Object, index []int, indirect bool) {
   142  	// WARNING: The code in this function is extremely subtle - do not modify casually!
   143  
   144  	if name == "_" {
   145  		return // blank fields/methods are never found
   146  	}
   147  
   148  	// Importantly, we must not call under before the call to deref below (nor
   149  	// does deref call under), as doing so could incorrectly result in finding
   150  	// methods of the pointer base type when T is a (*Named) pointer type.
   151  	typ, isPtr := deref(T)
   152  
   153  	// *typ where typ is an interface (incl. a type parameter) has no methods.
   154  	if isPtr {
   155  		if _, ok := under(typ).(*Interface); ok {
   156  			return
   157  		}
   158  	}
   159  
   160  	// Start with typ as single entry at shallowest depth.
   161  	current := []embeddedType{{typ, nil, isPtr, false}}
   162  
   163  	// seen tracks named types that we have seen already, allocated lazily.
   164  	// Used to avoid endless searches in case of recursive types.
   165  	//
   166  	// We must use a lookup on identity rather than a simple map[*Named]bool as
   167  	// instantiated types may be identical but not equal.
   168  	var seen instanceLookup
   169  
   170  	// search current depth
   171  	for len(current) > 0 {
   172  		var next []embeddedType // embedded types found at current depth
   173  
   174  		// look for (pkg, name) in all types at current depth
   175  		for _, e := range current {
   176  			typ := e.typ
   177  
   178  			// If we have a named type, we may have associated methods.
   179  			// Look for those first.
   180  			if named := asNamed(typ); named != nil {
   181  				if alt := seen.lookup(named); alt != nil {
   182  					// We have seen this type before, at a more shallow depth
   183  					// (note that multiples of this type at the current depth
   184  					// were consolidated before). The type at that depth shadows
   185  					// this same type at the current depth, so we can ignore
   186  					// this one.
   187  					continue
   188  				}
   189  				seen.add(named)
   190  
   191  				// look for a matching attached method
   192  				if i, m := named.lookupMethod(pkg, name, foldCase); m != nil {
   193  					// potential match
   194  					// caution: method may not have a proper signature yet
   195  					index = concat(e.index, i)
   196  					if obj != nil || e.multiples {
   197  						return nil, index, false // collision
   198  					}
   199  					obj = m
   200  					indirect = e.indirect
   201  					continue // we can't have a matching field or interface method
   202  				}
   203  			}
   204  
   205  			switch t := under(typ).(type) {
   206  			case *Struct:
   207  				// look for a matching field and collect embedded types
   208  				for i, f := range t.fields {
   209  					if f.sameId(pkg, name, foldCase) {
   210  						assert(f.typ != nil)
   211  						index = concat(e.index, i)
   212  						if obj != nil || e.multiples {
   213  							return nil, index, false // collision
   214  						}
   215  						obj = f
   216  						indirect = e.indirect
   217  						continue // we can't have a matching interface method
   218  					}
   219  					// Collect embedded struct fields for searching the next
   220  					// lower depth, but only if we have not seen a match yet
   221  					// (if we have a match it is either the desired field or
   222  					// we have a name collision on the same depth; in either
   223  					// case we don't need to look further).
   224  					// Embedded fields are always of the form T or *T where
   225  					// T is a type name. If e.typ appeared multiple times at
   226  					// this depth, f.typ appears multiple times at the next
   227  					// depth.
   228  					if obj == nil && f.embedded {
   229  						typ, isPtr := deref(f.typ)
   230  						// TODO(gri) optimization: ignore types that can't
   231  						// have fields or methods (only Named, Struct, and
   232  						// Interface types need to be considered).
   233  						next = append(next, embeddedType{typ, concat(e.index, i), e.indirect || isPtr, e.multiples})
   234  					}
   235  				}
   236  
   237  			case *Interface:
   238  				// look for a matching method (interface may be a type parameter)
   239  				if i, m := t.typeSet().LookupMethod(pkg, name, foldCase); m != nil {
   240  					assert(m.typ != nil)
   241  					index = concat(e.index, i)
   242  					if obj != nil || e.multiples {
   243  						return nil, index, false // collision
   244  					}
   245  					obj = m
   246  					indirect = e.indirect
   247  				}
   248  			}
   249  		}
   250  
   251  		if obj != nil {
   252  			// found a potential match
   253  			// spec: "A method call x.m() is valid if the method set of (the type of) x
   254  			//        contains m and the argument list can be assigned to the parameter
   255  			//        list of m. If x is addressable and &x's method set contains m, x.m()
   256  			//        is shorthand for (&x).m()".
   257  			if f, _ := obj.(*Func); f != nil {
   258  				// determine if method has a pointer receiver
   259  				if f.hasPtrRecv() && !indirect && !addressable {
   260  					return nil, nil, true // pointer/addressable receiver required
   261  				}
   262  			}
   263  			return
   264  		}
   265  
   266  		current = consolidateMultiples(next)
   267  	}
   268  
   269  	return nil, nil, false // not found
   270  }
   271  
   272  // embeddedType represents an embedded type
   273  type embeddedType struct {
   274  	typ       Type
   275  	index     []int // embedded field indices, starting with index at depth 0
   276  	indirect  bool  // if set, there was a pointer indirection on the path to this field
   277  	multiples bool  // if set, typ appears multiple times at this depth
   278  }
   279  
   280  // consolidateMultiples collects multiple list entries with the same type
   281  // into a single entry marked as containing multiples. The result is the
   282  // consolidated list.
   283  func consolidateMultiples(list []embeddedType) []embeddedType {
   284  	if len(list) <= 1 {
   285  		return list // at most one entry - nothing to do
   286  	}
   287  
   288  	n := 0                     // number of entries w/ unique type
   289  	prev := make(map[Type]int) // index at which type was previously seen
   290  	for _, e := range list {
   291  		if i, found := lookupType(prev, e.typ); found {
   292  			list[i].multiples = true
   293  			// ignore this entry
   294  		} else {
   295  			prev[e.typ] = n
   296  			list[n] = e
   297  			n++
   298  		}
   299  	}
   300  	return list[:n]
   301  }
   302  
   303  func lookupType(m map[Type]int, typ Type) (int, bool) {
   304  	// fast path: maybe the types are equal
   305  	if i, found := m[typ]; found {
   306  		return i, true
   307  	}
   308  
   309  	for t, i := range m {
   310  		if Identical(t, typ) {
   311  			return i, true
   312  		}
   313  	}
   314  
   315  	return 0, false
   316  }
   317  
   318  type instanceLookup struct {
   319  	// buf is used to avoid allocating the map m in the common case of a small
   320  	// number of instances.
   321  	buf [3]*Named
   322  	m   map[*Named][]*Named
   323  }
   324  
   325  func (l *instanceLookup) lookup(inst *Named) *Named {
   326  	for _, t := range l.buf {
   327  		if t != nil && Identical(inst, t) {
   328  			return t
   329  		}
   330  	}
   331  	for _, t := range l.m[inst.Origin()] {
   332  		if Identical(inst, t) {
   333  			return t
   334  		}
   335  	}
   336  	return nil
   337  }
   338  
   339  func (l *instanceLookup) add(inst *Named) {
   340  	for i, t := range l.buf {
   341  		if t == nil {
   342  			l.buf[i] = inst
   343  			return
   344  		}
   345  	}
   346  	if l.m == nil {
   347  		l.m = make(map[*Named][]*Named)
   348  	}
   349  	insts := l.m[inst.Origin()]
   350  	l.m[inst.Origin()] = append(insts, inst)
   351  }
   352  
   353  // MissingMethod returns (nil, false) if V implements T, otherwise it
   354  // returns a missing method required by T and whether it is missing or
   355  // just has the wrong type: either a pointer receiver or wrong signature.
   356  //
   357  // For non-interface types V, or if static is set, V implements T if all
   358  // methods of T are present in V. Otherwise (V is an interface and static
   359  // is not set), MissingMethod only checks that methods of T which are also
   360  // present in V have matching types (e.g., for a type assertion x.(T) where
   361  // x is of interface type V).
   362  func MissingMethod(V Type, T *Interface, static bool) (method *Func, wrongType bool) {
   363  	return (*Checker)(nil).missingMethod(V, T, static, Identical, nil)
   364  }
   365  
   366  // missingMethod is like MissingMethod but accepts a *Checker as receiver,
   367  // a comparator equivalent for type comparison, and a *string for error causes.
   368  // The receiver may be nil if missingMethod is invoked through an exported
   369  // API call (such as MissingMethod), i.e., when all methods have been type-
   370  // checked.
   371  // The underlying type of T must be an interface; T (rather than its under-
   372  // lying type) is used for better error messages (reported through *cause).
   373  // The comparator is used to compare signatures.
   374  // If a method is missing and cause is not nil, *cause describes the error.
   375  func (check *Checker) missingMethod(V, T Type, static bool, equivalent func(x, y Type) bool, cause *string) (method *Func, wrongType bool) {
   376  	methods := under(T).(*Interface).typeSet().methods // T must be an interface
   377  	if len(methods) == 0 {
   378  		return nil, false
   379  	}
   380  
   381  	const (
   382  		ok = iota
   383  		notFound
   384  		wrongName
   385  		unexported
   386  		wrongSig
   387  		ambigSel
   388  		ptrRecv
   389  		field
   390  	)
   391  
   392  	state := ok
   393  	var m *Func // method on T we're trying to implement
   394  	var f *Func // method on V, if found (state is one of ok, wrongName, wrongSig)
   395  
   396  	if u, _ := under(V).(*Interface); u != nil {
   397  		tset := u.typeSet()
   398  		for _, m = range methods {
   399  			_, f = tset.LookupMethod(m.pkg, m.name, false)
   400  
   401  			if f == nil {
   402  				if !static {
   403  					continue
   404  				}
   405  				state = notFound
   406  				break
   407  			}
   408  
   409  			if !equivalent(f.typ, m.typ) {
   410  				state = wrongSig
   411  				break
   412  			}
   413  		}
   414  	} else {
   415  		for _, m = range methods {
   416  			obj, index, indirect := lookupFieldOrMethodImpl(V, false, m.pkg, m.name, false)
   417  
   418  			// check if m is ambiguous, on *V, or on V with case-folding
   419  			if obj == nil {
   420  				switch {
   421  				case index != nil:
   422  					state = ambigSel
   423  				case indirect:
   424  					state = ptrRecv
   425  				default:
   426  					state = notFound
   427  					obj, _, _ = lookupFieldOrMethodImpl(V, false, m.pkg, m.name, true /* fold case */)
   428  					f, _ = obj.(*Func)
   429  					if f != nil {
   430  						state = wrongName
   431  						if f.name == m.name {
   432  							// If the names are equal, f must be unexported
   433  							// (otherwise the package wouldn't matter).
   434  							state = unexported
   435  						}
   436  					}
   437  				}
   438  				break
   439  			}
   440  
   441  			// we must have a method (not a struct field)
   442  			f, _ = obj.(*Func)
   443  			if f == nil {
   444  				state = field
   445  				break
   446  			}
   447  
   448  			// methods may not have a fully set up signature yet
   449  			if check != nil {
   450  				check.objDecl(f, nil)
   451  			}
   452  
   453  			if !equivalent(f.typ, m.typ) {
   454  				state = wrongSig
   455  				break
   456  			}
   457  		}
   458  	}
   459  
   460  	if state == ok {
   461  		return nil, false
   462  	}
   463  
   464  	if cause != nil {
   465  		if f != nil {
   466  			// This method may be formatted in funcString below, so must have a fully
   467  			// set up signature.
   468  			if check != nil {
   469  				check.objDecl(f, nil)
   470  			}
   471  		}
   472  		switch state {
   473  		case notFound:
   474  			switch {
   475  			case isInterfacePtr(V):
   476  				*cause = "(" + check.interfacePtrError(V) + ")"
   477  			case isInterfacePtr(T):
   478  				*cause = "(" + check.interfacePtrError(T) + ")"
   479  			default:
   480  				*cause = check.sprintf("(missing method %s)", m.Name())
   481  			}
   482  		case wrongName:
   483  			fs, ms := check.funcString(f, false), check.funcString(m, false)
   484  			*cause = check.sprintf("(missing method %s)\n\t\thave %s\n\t\twant %s", m.Name(), fs, ms)
   485  		case unexported:
   486  			*cause = check.sprintf("(unexported method %s)", m.Name())
   487  		case wrongSig:
   488  			fs, ms := check.funcString(f, false), check.funcString(m, false)
   489  			if fs == ms {
   490  				// Don't report "want Foo, have Foo".
   491  				// Add package information to disambiguate (go.dev/issue/54258).
   492  				fs, ms = check.funcString(f, true), check.funcString(m, true)
   493  			}
   494  			if fs == ms {
   495  				// We still have "want Foo, have Foo".
   496  				// This is most likely due to different type parameters with
   497  				// the same name appearing in the instantiated signatures
   498  				// (go.dev/issue/61685).
   499  				// Rather than reporting this misleading error cause, for now
   500  				// just point out that the method signature is incorrect.
   501  				// TODO(gri) should find a good way to report the root cause
   502  				*cause = check.sprintf("(wrong type for method %s)", m.Name())
   503  				break
   504  			}
   505  			*cause = check.sprintf("(wrong type for method %s)\n\t\thave %s\n\t\twant %s", m.Name(), fs, ms)
   506  		case ambigSel:
   507  			*cause = check.sprintf("(ambiguous selector %s.%s)", V, m.Name())
   508  		case ptrRecv:
   509  			*cause = check.sprintf("(method %s has pointer receiver)", m.Name())
   510  		case field:
   511  			*cause = check.sprintf("(%s.%s is a field, not a method)", V, m.Name())
   512  		default:
   513  			panic("unreachable")
   514  		}
   515  	}
   516  
   517  	return m, state == wrongSig || state == ptrRecv
   518  }
   519  
   520  // hasAllMethods is similar to checkMissingMethod but instead reports whether all methods are present.
   521  // If V is not a valid type, or if it is a struct containing embedded fields with invalid types, the
   522  // result is true because it is not possible to say with certainty whether a method is missing or not
   523  // (an embedded field may have the method in question).
   524  // If the result is false and cause is not nil, *cause describes the error.
   525  // Use hasAllMethods to avoid follow-on errors due to incorrect types.
   526  func (check *Checker) hasAllMethods(V, T Type, static bool, equivalent func(x, y Type) bool, cause *string) bool {
   527  	if !isValid(V) {
   528  		return true // we don't know anything about V, assume it implements T
   529  	}
   530  	m, _ := check.missingMethod(V, T, static, equivalent, cause)
   531  	return m == nil || hasInvalidEmbeddedFields(V, nil)
   532  }
   533  
   534  // hasInvalidEmbeddedFields reports whether T is a struct (or a pointer to a struct) that contains
   535  // (directly or indirectly) embedded fields with invalid types.
   536  func hasInvalidEmbeddedFields(T Type, seen map[*Struct]bool) bool {
   537  	if S, _ := under(derefStructPtr(T)).(*Struct); S != nil && !seen[S] {
   538  		if seen == nil {
   539  			seen = make(map[*Struct]bool)
   540  		}
   541  		seen[S] = true
   542  		for _, f := range S.fields {
   543  			if f.embedded && (!isValid(f.typ) || hasInvalidEmbeddedFields(f.typ, seen)) {
   544  				return true
   545  			}
   546  		}
   547  	}
   548  	return false
   549  }
   550  
   551  func isInterfacePtr(T Type) bool {
   552  	p, _ := under(T).(*Pointer)
   553  	return p != nil && IsInterface(p.base)
   554  }
   555  
   556  // check may be nil.
   557  func (check *Checker) interfacePtrError(T Type) string {
   558  	assert(isInterfacePtr(T))
   559  	if p, _ := under(T).(*Pointer); isTypeParam(p.base) {
   560  		return check.sprintf("type %s is pointer to type parameter, not type parameter", T)
   561  	}
   562  	return check.sprintf("type %s is pointer to interface, not interface", T)
   563  }
   564  
   565  // funcString returns a string of the form name + signature for f.
   566  // check may be nil.
   567  func (check *Checker) funcString(f *Func, pkgInfo bool) string {
   568  	buf := bytes.NewBufferString(f.name)
   569  	var qf Qualifier
   570  	if check != nil && !pkgInfo {
   571  		qf = check.qualifier
   572  	}
   573  	w := newTypeWriter(buf, qf)
   574  	w.pkgInfo = pkgInfo
   575  	w.paramNames = false
   576  	w.signature(f.typ.(*Signature))
   577  	return buf.String()
   578  }
   579  
   580  // assertableTo reports whether a value of type V can be asserted to have type T.
   581  // The receiver may be nil if assertableTo is invoked through an exported API call
   582  // (such as AssertableTo), i.e., when all methods have been type-checked.
   583  // The underlying type of V must be an interface.
   584  // If the result is false and cause is not nil, *cause describes the error.
   585  // TODO(gri) replace calls to this function with calls to newAssertableTo.
   586  func (check *Checker) assertableTo(V, T Type, cause *string) bool {
   587  	// no static check is required if T is an interface
   588  	// spec: "If T is an interface type, x.(T) asserts that the
   589  	//        dynamic type of x implements the interface T."
   590  	if IsInterface(T) {
   591  		return true
   592  	}
   593  	// TODO(gri) fix this for generalized interfaces
   594  	return check.hasAllMethods(T, V, false, Identical, cause)
   595  }
   596  
   597  // newAssertableTo reports whether a value of type V can be asserted to have type T.
   598  // It also implements behavior for interfaces that currently are only permitted
   599  // in constraint position (we have not yet defined that behavior in the spec).
   600  // The underlying type of V must be an interface.
   601  // If the result is false and cause is not nil, *cause is set to the error cause.
   602  func (check *Checker) newAssertableTo(V, T Type, cause *string) bool {
   603  	// no static check is required if T is an interface
   604  	// spec: "If T is an interface type, x.(T) asserts that the
   605  	//        dynamic type of x implements the interface T."
   606  	if IsInterface(T) {
   607  		return true
   608  	}
   609  	return check.implements(T, V, false, cause)
   610  }
   611  
   612  // deref dereferences typ if it is a *Pointer (but not a *Named type
   613  // with an underlying pointer type!) and returns its base and true.
   614  // Otherwise it returns (typ, false).
   615  func deref(typ Type) (Type, bool) {
   616  	if p, _ := Unalias(typ).(*Pointer); p != nil {
   617  		// p.base should never be nil, but be conservative
   618  		if p.base == nil {
   619  			if debug {
   620  				panic("pointer with nil base type (possibly due to an invalid cyclic declaration)")
   621  			}
   622  			return Typ[Invalid], true
   623  		}
   624  		return p.base, true
   625  	}
   626  	return typ, false
   627  }
   628  
   629  // derefStructPtr dereferences typ if it is a (named or unnamed) pointer to a
   630  // (named or unnamed) struct and returns its base. Otherwise it returns typ.
   631  func derefStructPtr(typ Type) Type {
   632  	if p, _ := under(typ).(*Pointer); p != nil {
   633  		if _, ok := under(p.base).(*Struct); ok {
   634  			return p.base
   635  		}
   636  	}
   637  	return typ
   638  }
   639  
   640  // concat returns the result of concatenating list and i.
   641  // The result does not share its underlying array with list.
   642  func concat(list []int, i int) []int {
   643  	var t []int
   644  	t = append(t, list...)
   645  	return append(t, i)
   646  }
   647  
   648  // fieldIndex returns the index for the field with matching package and name, or a value < 0.
   649  // See Object.sameId for the meaning of foldCase.
   650  func fieldIndex(fields []*Var, pkg *Package, name string, foldCase bool) int {
   651  	if name != "_" {
   652  		for i, f := range fields {
   653  			if f.sameId(pkg, name, foldCase) {
   654  				return i
   655  			}
   656  		}
   657  	}
   658  	return -1
   659  }
   660  
   661  // methodIndex returns the index of and method with matching package and name, or (-1, nil).
   662  // See Object.sameId for the meaning of foldCase.
   663  func methodIndex(methods []*Func, pkg *Package, name string, foldCase bool) (int, *Func) {
   664  	if name != "_" {
   665  		for i, m := range methods {
   666  			if m.sameId(pkg, name, foldCase) {
   667  				return i, m
   668  			}
   669  		}
   670  	}
   671  	return -1, nil
   672  }
   673  

View as plain text