1 // Copyright 2015 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Lowering arithmetic
6 (Add(64|32|16|8) ...) => (ADD(Q|L|L|L) ...)
7 (AddPtr ...) => (ADDQ ...)
8 (Add(32|64)F ...) => (ADDS(S|D) ...)
9
10 (Sub(64|32|16|8) ...) => (SUB(Q|L|L|L) ...)
11 (SubPtr ...) => (SUBQ ...)
12 (Sub(32|64)F ...) => (SUBS(S|D) ...)
13
14 (Mul(64|32|16|8) ...) => (MUL(Q|L|L|L) ...)
15 (Mul(32|64)F ...) => (MULS(S|D) ...)
16
17 (Select0 (Mul64uover x y)) => (Select0 <typ.UInt64> (MULQU x y))
18 (Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y))
19 (Select1 (Mul(64|32)uover x y)) => (SETO (Select1 <types.TypeFlags> (MUL(Q|L)U x y)))
20
21 (Hmul(64|32) ...) => (HMUL(Q|L) ...)
22 (Hmul(64|32)u ...) => (HMUL(Q|L)U ...)
23
24 (Div(64|32|16) [a] x y) => (Select0 (DIV(Q|L|W) [a] x y))
25 (Div8 x y) => (Select0 (DIVW (SignExt8to16 x) (SignExt8to16 y)))
26 (Div(64|32|16)u x y) => (Select0 (DIV(Q|L|W)U x y))
27 (Div8u x y) => (Select0 (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)))
28 (Div(32|64)F ...) => (DIVS(S|D) ...)
29
30 (Select0 (Add64carry x y c)) =>
31 (Select0 <typ.UInt64> (ADCQ x y (Select1 <types.TypeFlags> (NEGLflags c))))
32 (Select1 (Add64carry x y c)) =>
33 (NEGQ <typ.UInt64> (SBBQcarrymask <typ.UInt64> (Select1 <types.TypeFlags> (ADCQ x y (Select1 <types.TypeFlags> (NEGLflags c))))))
34 (Select0 (Sub64borrow x y c)) =>
35 (Select0 <typ.UInt64> (SBBQ x y (Select1 <types.TypeFlags> (NEGLflags c))))
36 (Select1 (Sub64borrow x y c)) =>
37 (NEGQ <typ.UInt64> (SBBQcarrymask <typ.UInt64> (Select1 <types.TypeFlags> (SBBQ x y (Select1 <types.TypeFlags> (NEGLflags c))))))
38
39 // Optimize ADCQ and friends
40 (ADCQ x (MOVQconst [c]) carry) && is32Bit(c) => (ADCQconst x [int32(c)] carry)
41 (ADCQ x y (FlagEQ)) => (ADDQcarry x y)
42 (ADCQconst x [c] (FlagEQ)) => (ADDQconstcarry x [c])
43 (ADDQcarry x (MOVQconst [c])) && is32Bit(c) => (ADDQconstcarry x [int32(c)])
44 (SBBQ x (MOVQconst [c]) borrow) && is32Bit(c) => (SBBQconst x [int32(c)] borrow)
45 (SBBQ x y (FlagEQ)) => (SUBQborrow x y)
46 (SBBQconst x [c] (FlagEQ)) => (SUBQconstborrow x [c])
47 (SUBQborrow x (MOVQconst [c])) && is32Bit(c) => (SUBQconstborrow x [int32(c)])
48 (Select1 (NEGLflags (MOVQconst [0]))) => (FlagEQ)
49 (Select1 (NEGLflags (NEGQ (SBBQcarrymask x)))) => x
50
51
52 (Mul64uhilo ...) => (MULQU2 ...)
53 (Div128u ...) => (DIVQU2 ...)
54
55 (Avg64u ...) => (AVGQU ...)
56
57 (Mod(64|32|16) [a] x y) => (Select1 (DIV(Q|L|W) [a] x y))
58 (Mod8 x y) => (Select1 (DIVW (SignExt8to16 x) (SignExt8to16 y)))
59 (Mod(64|32|16)u x y) => (Select1 (DIV(Q|L|W)U x y))
60 (Mod8u x y) => (Select1 (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)))
61
62 (And(64|32|16|8) ...) => (AND(Q|L|L|L) ...)
63 (Or(64|32|16|8) ...) => (OR(Q|L|L|L) ...)
64 (Xor(64|32|16|8) ...) => (XOR(Q|L|L|L) ...)
65 (Com(64|32|16|8) ...) => (NOT(Q|L|L|L) ...)
66
67 (Neg(64|32|16|8) ...) => (NEG(Q|L|L|L) ...)
68 (Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))]))
69 (Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)]))
70
71 // Lowering boolean ops
72 (AndB ...) => (ANDL ...)
73 (OrB ...) => (ORL ...)
74 (Not x) => (XORLconst [1] x)
75
76 // Lowering pointer arithmetic
77 (OffPtr [off] ptr) && is32Bit(off) => (ADDQconst [int32(off)] ptr)
78 (OffPtr [off] ptr) => (ADDQ (MOVQconst [off]) ptr)
79
80 // Lowering other arithmetic
81 (Ctz64 x) && buildcfg.GOAMD64 >= 3 => (TZCNTQ x)
82 (Ctz32 x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
83 (Ctz64 <t> x) && buildcfg.GOAMD64 < 3 => (CMOVQEQ (Select0 <t> (BSFQ x)) (MOVQconst <t> [64]) (Select1 <types.TypeFlags> (BSFQ x)))
84 (Ctz32 x) && buildcfg.GOAMD64 < 3 => (Select0 (BSFQ (BTSQconst <typ.UInt64> [32] x)))
85 (Ctz16 x) => (BSFL (ORLconst <typ.UInt32> [1<<16] x))
86 (Ctz8 x) => (BSFL (ORLconst <typ.UInt32> [1<<8 ] x))
87
88 (Ctz64NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTQ x)
89 (Ctz32NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
90 (Ctz16NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
91 (Ctz8NonZero x) && buildcfg.GOAMD64 >= 3 => (TZCNTL x)
92 (Ctz64NonZero x) && buildcfg.GOAMD64 < 3 => (Select0 (BSFQ x))
93 (Ctz32NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
94 (Ctz16NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
95 (Ctz8NonZero x) && buildcfg.GOAMD64 < 3 => (BSFL x)
96
97 // BitLen64 of a 64 bit value x requires checking whether x == 0, since BSRQ is undefined when x == 0.
98 // However, for zero-extended values, we can cheat a bit, and calculate
99 // BSR(x<<1 + 1), which is guaranteed to be non-zero, and which conveniently
100 // places the index of the highest set bit where we want it.
101 // For GOAMD64>=3, BitLen can be calculated by OperandSize - LZCNT(x).
102 (BitLen64 <t> x) && buildcfg.GOAMD64 < 3 => (ADDQconst [1] (CMOVQEQ <t> (Select0 <t> (BSRQ x)) (MOVQconst <t> [-1]) (Select1 <types.TypeFlags> (BSRQ x))))
103 (BitLen32 x) && buildcfg.GOAMD64 < 3 => (Select0 (BSRQ (LEAQ1 <typ.UInt64> [1] (MOVLQZX <typ.UInt64> x) (MOVLQZX <typ.UInt64> x))))
104 (BitLen16 x) && buildcfg.GOAMD64 < 3 => (BSRL (LEAL1 <typ.UInt32> [1] (MOVWQZX <typ.UInt32> x) (MOVWQZX <typ.UInt32> x)))
105 (BitLen8 x) && buildcfg.GOAMD64 < 3 => (BSRL (LEAL1 <typ.UInt32> [1] (MOVBQZX <typ.UInt32> x) (MOVBQZX <typ.UInt32> x)))
106 (BitLen64 <t> x) && buildcfg.GOAMD64 >= 3 => (NEGQ (ADDQconst <t> [-64] (LZCNTQ x)))
107 // Use 64-bit version to allow const-fold remove unnecessary arithmetic.
108 (BitLen32 <t> x) && buildcfg.GOAMD64 >= 3 => (NEGQ (ADDQconst <t> [-32] (LZCNTL x)))
109 (BitLen16 <t> x) && buildcfg.GOAMD64 >= 3 => (NEGQ (ADDQconst <t> [-32] (LZCNTL (MOVWQZX <x.Type> x))))
110 (BitLen8 <t> x) && buildcfg.GOAMD64 >= 3 => (NEGQ (ADDQconst <t> [-32] (LZCNTL (MOVBQZX <x.Type> x))))
111
112 (Bswap(64|32) ...) => (BSWAP(Q|L) ...)
113 (Bswap16 x) => (ROLWconst [8] x)
114
115 (PopCount(64|32) ...) => (POPCNT(Q|L) ...)
116 (PopCount16 x) => (POPCNTL (MOVWQZX <typ.UInt32> x))
117 (PopCount8 x) => (POPCNTL (MOVBQZX <typ.UInt32> x))
118
119 (Sqrt ...) => (SQRTSD ...)
120 (Sqrt32 ...) => (SQRTSS ...)
121
122 (RoundToEven x) => (ROUNDSD [0] x)
123 (Floor x) => (ROUNDSD [1] x)
124 (Ceil x) => (ROUNDSD [2] x)
125 (Trunc x) => (ROUNDSD [3] x)
126
127 (FMA x y z) => (VFMADD231SD z x y)
128
129 // Lowering extension
130 // Note: we always extend to 64 bits even though some ops don't need that many result bits.
131 (SignExt8to16 ...) => (MOVBQSX ...)
132 (SignExt8to32 ...) => (MOVBQSX ...)
133 (SignExt8to64 ...) => (MOVBQSX ...)
134 (SignExt16to32 ...) => (MOVWQSX ...)
135 (SignExt16to64 ...) => (MOVWQSX ...)
136 (SignExt32to64 ...) => (MOVLQSX ...)
137
138 (ZeroExt8to16 ...) => (MOVBQZX ...)
139 (ZeroExt8to32 ...) => (MOVBQZX ...)
140 (ZeroExt8to64 ...) => (MOVBQZX ...)
141 (ZeroExt16to32 ...) => (MOVWQZX ...)
142 (ZeroExt16to64 ...) => (MOVWQZX ...)
143 (ZeroExt32to64 ...) => (MOVLQZX ...)
144
145 (Slicemask <t> x) => (SARQconst (NEGQ <t> x) [63])
146
147 (SpectreIndex <t> x y) => (CMOVQCC x (MOVQconst [0]) (CMPQ x y))
148 (SpectreSliceIndex <t> x y) => (CMOVQHI x (MOVQconst [0]) (CMPQ x y))
149
150 // Lowering truncation
151 // Because we ignore high parts of registers, truncates are just copies.
152 (Trunc16to8 ...) => (Copy ...)
153 (Trunc32to8 ...) => (Copy ...)
154 (Trunc32to16 ...) => (Copy ...)
155 (Trunc64to8 ...) => (Copy ...)
156 (Trunc64to16 ...) => (Copy ...)
157 (Trunc64to32 ...) => (Copy ...)
158
159 // Lowering float <-> int
160 (Cvt32to32F ...) => (CVTSL2SS ...)
161 (Cvt32to64F ...) => (CVTSL2SD ...)
162 (Cvt64to32F ...) => (CVTSQ2SS ...)
163 (Cvt64to64F ...) => (CVTSQ2SD ...)
164
165 (Cvt32Fto32 ...) => (CVTTSS2SL ...)
166 (Cvt32Fto64 ...) => (CVTTSS2SQ ...)
167 (Cvt64Fto32 ...) => (CVTTSD2SL ...)
168 (Cvt64Fto64 ...) => (CVTTSD2SQ ...)
169
170 (Cvt32Fto64F ...) => (CVTSS2SD ...)
171 (Cvt64Fto32F ...) => (CVTSD2SS ...)
172
173 (Round(32|64)F ...) => (LoweredRound(32|64)F ...)
174
175 // Floating-point min is tricky, as the hardware op isn't right for various special
176 // cases (-0 and NaN). We use two hardware ops organized just right to make the
177 // result come out how we want it. See https://github.com/golang/go/issues/59488#issuecomment-1553493207
178 // (although that comment isn't exactly right, as the value overwritten is not simulated correctly).
179 // t1 = MINSD x, y => incorrect if x==NaN or x==-0,y==+0
180 // t2 = MINSD t1, x => fixes x==NaN case
181 // res = POR t1, t2 => fixes x==-0,y==+0 case
182 // Note that this trick depends on the special property that (NaN OR x) produces a NaN (although
183 // it might not produce the same NaN as the input).
184 (Min(64|32)F <t> x y) => (POR (MINS(D|S) <t> (MINS(D|S) <t> x y) x) (MINS(D|S) <t> x y))
185 // Floating-point max is even trickier. Punt to using min instead.
186 // max(x,y) == -min(-x,-y)
187 (Max(64|32)F <t> x y) => (Neg(64|32)F <t> (Min(64|32)F <t> (Neg(64|32)F <t> x) (Neg(64|32)F <t> y)))
188
189 (CvtBoolToUint8 ...) => (Copy ...)
190
191 // Lowering shifts
192 // Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
193 // result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
194 (Lsh64x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDQ (SHLQ <t> x y) (SBBQcarrymask <t> (CMP(Q|L|W|B)const y [64])))
195 (Lsh32x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
196 (Lsh16x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
197 (Lsh8x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
198
199 (Lsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLQ x y)
200 (Lsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
201 (Lsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
202 (Lsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SHLL x y)
203
204 (Rsh64Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDQ (SHRQ <t> x y) (SBBQcarrymask <t> (CMP(Q|L|W|B)const y [64])))
205 (Rsh32Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [32])))
206 (Rsh16Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [16])))
207 (Rsh8Ux(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(Q|L|W|B)const y [8])))
208
209 (Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRQ x y)
210 (Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRL x y)
211 (Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRW x y)
212 (Rsh8Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SHRB x y)
213
214 // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
215 // We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.
216 (Rsh64x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARQ <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [64])))))
217 (Rsh32x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [32])))))
218 (Rsh16x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [16])))))
219 (Rsh8x(64|32|16|8) <t> x y) && !shiftIsBounded(v) => (SARB <t> x (OR(Q|L|L|L) <y.Type> y (NOT(Q|L|L|L) <y.Type> (SBB(Q|L|L|L)carrymask <y.Type> (CMP(Q|L|W|B)const y [8])))))
220
221 (Rsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SARQ x y)
222 (Rsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SARL x y)
223 (Rsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SARW x y)
224 (Rsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SARB x y)
225
226 // Lowering integer comparisons
227 (Less(64|32|16|8) x y) => (SETL (CMP(Q|L|W|B) x y))
228 (Less(64|32|16|8)U x y) => (SETB (CMP(Q|L|W|B) x y))
229 (Leq(64|32|16|8) x y) => (SETLE (CMP(Q|L|W|B) x y))
230 (Leq(64|32|16|8)U x y) => (SETBE (CMP(Q|L|W|B) x y))
231 (Eq(Ptr|64|32|16|8|B) x y) => (SETEQ (CMP(Q|Q|L|W|B|B) x y))
232 (Neq(Ptr|64|32|16|8|B) x y) => (SETNE (CMP(Q|Q|L|W|B|B) x y))
233
234 // Lowering floating point comparisons
235 // Note Go assembler gets UCOMISx operand order wrong, but it is right here
236 // and the operands are reversed when generating assembly language.
237 (Eq(32|64)F x y) => (SETEQF (UCOMIS(S|D) x y))
238 (Neq(32|64)F x y) => (SETNEF (UCOMIS(S|D) x y))
239 // Use SETGF/SETGEF with reversed operands to dodge NaN case.
240 (Less(32|64)F x y) => (SETGF (UCOMIS(S|D) y x))
241 (Leq(32|64)F x y) => (SETGEF (UCOMIS(S|D) y x))
242
243 // Lowering loads
244 (Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVQload ptr mem)
245 (Load <t> ptr mem) && is32BitInt(t) => (MOVLload ptr mem)
246 (Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem)
247 (Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem)
248 (Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem)
249 (Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem)
250
251 // Lowering stores
252 (Store {t} ptr val mem) && t.Size() == 8 && t.IsFloat() => (MOVSDstore ptr val mem)
253 (Store {t} ptr val mem) && t.Size() == 4 && t.IsFloat() => (MOVSSstore ptr val mem)
254 (Store {t} ptr val mem) && t.Size() == 8 && !t.IsFloat() => (MOVQstore ptr val mem)
255 (Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVLstore ptr val mem)
256 (Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem)
257 (Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
258
259 // Lowering moves
260 (Move [0] _ _ mem) => mem
261 (Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
262 (Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
263 (Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem)
264 (Move [8] dst src mem) => (MOVQstore dst (MOVQload src mem) mem)
265 (Move [16] dst src mem) => (MOVOstore dst (MOVOload src mem) mem)
266
267 (Move [32] dst src mem) =>
268 (Move [16]
269 (OffPtr <dst.Type> dst [16])
270 (OffPtr <src.Type> src [16])
271 (Move [16] dst src mem))
272
273 (Move [48] dst src mem) =>
274 (Move [32]
275 (OffPtr <dst.Type> dst [16])
276 (OffPtr <src.Type> src [16])
277 (Move [16] dst src mem))
278
279 (Move [64] dst src mem) =>
280 (Move [32]
281 (OffPtr <dst.Type> dst [32])
282 (OffPtr <src.Type> src [32])
283 (Move [32] dst src mem))
284
285 (Move [3] dst src mem) =>
286 (MOVBstore [2] dst (MOVBload [2] src mem)
287 (MOVWstore dst (MOVWload src mem) mem))
288 (Move [5] dst src mem) =>
289 (MOVBstore [4] dst (MOVBload [4] src mem)
290 (MOVLstore dst (MOVLload src mem) mem))
291 (Move [6] dst src mem) =>
292 (MOVWstore [4] dst (MOVWload [4] src mem)
293 (MOVLstore dst (MOVLload src mem) mem))
294 (Move [7] dst src mem) =>
295 (MOVLstore [3] dst (MOVLload [3] src mem)
296 (MOVLstore dst (MOVLload src mem) mem))
297 (Move [9] dst src mem) =>
298 (MOVBstore [8] dst (MOVBload [8] src mem)
299 (MOVQstore dst (MOVQload src mem) mem))
300 (Move [10] dst src mem) =>
301 (MOVWstore [8] dst (MOVWload [8] src mem)
302 (MOVQstore dst (MOVQload src mem) mem))
303 (Move [11] dst src mem) =>
304 (MOVLstore [7] dst (MOVLload [7] src mem)
305 (MOVQstore dst (MOVQload src mem) mem))
306 (Move [12] dst src mem) =>
307 (MOVLstore [8] dst (MOVLload [8] src mem)
308 (MOVQstore dst (MOVQload src mem) mem))
309 (Move [s] dst src mem) && s >= 13 && s <= 15 =>
310 (MOVQstore [int32(s-8)] dst (MOVQload [int32(s-8)] src mem)
311 (MOVQstore dst (MOVQload src mem) mem))
312
313 // Adjust moves to be a multiple of 16 bytes.
314 (Move [s] dst src mem)
315 && s > 16 && s%16 != 0 && s%16 <= 8 =>
316 (Move [s-s%16]
317 (OffPtr <dst.Type> dst [s%16])
318 (OffPtr <src.Type> src [s%16])
319 (MOVQstore dst (MOVQload src mem) mem))
320 (Move [s] dst src mem)
321 && s > 16 && s%16 != 0 && s%16 > 8 =>
322 (Move [s-s%16]
323 (OffPtr <dst.Type> dst [s%16])
324 (OffPtr <src.Type> src [s%16])
325 (MOVOstore dst (MOVOload src mem) mem))
326
327 // Medium copying uses a duff device.
328 (Move [s] dst src mem)
329 && s > 64 && s <= 16*64 && s%16 == 0
330 && logLargeCopy(v, s) =>
331 (DUFFCOPY [s] dst src mem)
332
333 // Large copying uses REP MOVSQ.
334 (Move [s] dst src mem) && s > 16*64 && s%8 == 0 && logLargeCopy(v, s) =>
335 (REPMOVSQ dst src (MOVQconst [s/8]) mem)
336
337 // Lowering Zero instructions
338 (Zero [0] _ mem) => mem
339 (Zero [1] destptr mem) => (MOVBstoreconst [makeValAndOff(0,0)] destptr mem)
340 (Zero [2] destptr mem) => (MOVWstoreconst [makeValAndOff(0,0)] destptr mem)
341 (Zero [4] destptr mem) => (MOVLstoreconst [makeValAndOff(0,0)] destptr mem)
342 (Zero [8] destptr mem) => (MOVQstoreconst [makeValAndOff(0,0)] destptr mem)
343
344 (Zero [3] destptr mem) =>
345 (MOVBstoreconst [makeValAndOff(0,2)] destptr
346 (MOVWstoreconst [makeValAndOff(0,0)] destptr mem))
347 (Zero [5] destptr mem) =>
348 (MOVBstoreconst [makeValAndOff(0,4)] destptr
349 (MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
350 (Zero [6] destptr mem) =>
351 (MOVWstoreconst [makeValAndOff(0,4)] destptr
352 (MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
353 (Zero [7] destptr mem) =>
354 (MOVLstoreconst [makeValAndOff(0,3)] destptr
355 (MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
356
357 // Zero small numbers of words directly.
358 (Zero [9] destptr mem) =>
359 (MOVBstoreconst [makeValAndOff(0,8)] destptr
360 (MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
361
362 (Zero [10] destptr mem) =>
363 (MOVWstoreconst [makeValAndOff(0,8)] destptr
364 (MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
365
366 (Zero [11] destptr mem) =>
367 (MOVLstoreconst [makeValAndOff(0,7)] destptr
368 (MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
369
370 (Zero [12] destptr mem) =>
371 (MOVLstoreconst [makeValAndOff(0,8)] destptr
372 (MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
373
374 (Zero [s] destptr mem) && s > 12 && s < 16 =>
375 (MOVQstoreconst [makeValAndOff(0,int32(s-8))] destptr
376 (MOVQstoreconst [makeValAndOff(0,0)] destptr mem))
377
378 // Adjust zeros to be a multiple of 16 bytes.
379 (Zero [s] destptr mem) && s%16 != 0 && s > 16 =>
380 (Zero [s-s%16] (OffPtr <destptr.Type> destptr [s%16])
381 (MOVOstoreconst [makeValAndOff(0,0)] destptr mem))
382
383 (Zero [16] destptr mem) =>
384 (MOVOstoreconst [makeValAndOff(0,0)] destptr mem)
385 (Zero [32] destptr mem) =>
386 (MOVOstoreconst [makeValAndOff(0,16)] destptr
387 (MOVOstoreconst [makeValAndOff(0,0)] destptr mem))
388 (Zero [48] destptr mem) =>
389 (MOVOstoreconst [makeValAndOff(0,32)] destptr
390 (MOVOstoreconst [makeValAndOff(0,16)] destptr
391 (MOVOstoreconst [makeValAndOff(0,0)] destptr mem)))
392 (Zero [64] destptr mem) =>
393 (MOVOstoreconst [makeValAndOff(0,48)] destptr
394 (MOVOstoreconst [makeValAndOff(0,32)] destptr
395 (MOVOstoreconst [makeValAndOff(0,16)] destptr
396 (MOVOstoreconst [makeValAndOff(0,0)] destptr mem))))
397
398 // Medium zeroing uses a duff device.
399 (Zero [s] destptr mem)
400 && s > 64 && s <= 1024 && s%16 == 0 =>
401 (DUFFZERO [s] destptr mem)
402
403 // Large zeroing uses REP STOSQ.
404 (Zero [s] destptr mem)
405 && s > 1024 && s%8 == 0 =>
406 (REPSTOSQ destptr (MOVQconst [s/8]) (MOVQconst [0]) mem)
407
408 // Lowering constants
409 (Const8 [c]) => (MOVLconst [int32(c)])
410 (Const16 [c]) => (MOVLconst [int32(c)])
411 (Const32 ...) => (MOVLconst ...)
412 (Const64 ...) => (MOVQconst ...)
413 (Const32F ...) => (MOVSSconst ...)
414 (Const64F ...) => (MOVSDconst ...)
415 (ConstNil ) => (MOVQconst [0])
416 (ConstBool [c]) => (MOVLconst [b2i32(c)])
417
418 // Lowering calls
419 (StaticCall ...) => (CALLstatic ...)
420 (ClosureCall ...) => (CALLclosure ...)
421 (InterCall ...) => (CALLinter ...)
422 (TailCall ...) => (CALLtail ...)
423
424 // Lowering conditional moves
425 // If the condition is a SETxx, we can just run a CMOV from the comparison that was
426 // setting the flags.
427 // Legend: HI=unsigned ABOVE, CS=unsigned BELOW, CC=unsigned ABOVE EQUAL, LS=unsigned BELOW EQUAL
428 (CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && (is64BitInt(t) || isPtr(t))
429 => (CMOVQ(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
430 (CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && is32BitInt(t)
431 => (CMOVL(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
432 (CondSelect <t> x y (SET(EQ|NE|L|G|LE|GE|A|B|AE|BE|EQF|NEF|GF|GEF) cond)) && is16BitInt(t)
433 => (CMOVW(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS|EQF|NEF|GTF|GEF) y x cond)
434
435 // If the condition does not set the flags, we need to generate a comparison.
436 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 1
437 => (CondSelect <t> x y (MOVBQZX <typ.UInt64> check))
438 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 2
439 => (CondSelect <t> x y (MOVWQZX <typ.UInt64> check))
440 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 4
441 => (CondSelect <t> x y (MOVLQZX <typ.UInt64> check))
442
443 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && (is64BitInt(t) || isPtr(t))
444 => (CMOVQNE y x (CMPQconst [0] check))
445 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && is32BitInt(t)
446 => (CMOVLNE y x (CMPQconst [0] check))
447 (CondSelect <t> x y check) && !check.Type.IsFlags() && check.Type.Size() == 8 && is16BitInt(t)
448 => (CMOVWNE y x (CMPQconst [0] check))
449
450 // Absorb InvertFlags
451 (CMOVQ(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
452 => (CMOVQ(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
453 (CMOVL(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
454 => (CMOVL(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
455 (CMOVW(EQ|NE|LT|GT|LE|GE|HI|CS|CC|LS) x y (InvertFlags cond))
456 => (CMOVW(EQ|NE|GT|LT|GE|LE|CS|HI|LS|CC) x y cond)
457
458 // Absorb constants generated during lower
459 (CMOV(QEQ|QLE|QGE|QCC|QLS|LEQ|LLE|LGE|LCC|LLS|WEQ|WLE|WGE|WCC|WLS) _ x (FlagEQ)) => x
460 (CMOV(QNE|QLT|QGT|QCS|QHI|LNE|LLT|LGT|LCS|LHI|WNE|WLT|WGT|WCS|WHI) y _ (FlagEQ)) => y
461 (CMOV(QNE|QGT|QGE|QHI|QCC|LNE|LGT|LGE|LHI|LCC|WNE|WGT|WGE|WHI|WCC) _ x (FlagGT_UGT)) => x
462 (CMOV(QEQ|QLE|QLT|QLS|QCS|LEQ|LLE|LLT|LLS|LCS|WEQ|WLE|WLT|WLS|WCS) y _ (FlagGT_UGT)) => y
463 (CMOV(QNE|QGT|QGE|QLS|QCS|LNE|LGT|LGE|LLS|LCS|WNE|WGT|WGE|WLS|WCS) _ x (FlagGT_ULT)) => x
464 (CMOV(QEQ|QLE|QLT|QHI|QCC|LEQ|LLE|LLT|LHI|LCC|WEQ|WLE|WLT|WHI|WCC) y _ (FlagGT_ULT)) => y
465 (CMOV(QNE|QLT|QLE|QCS|QLS|LNE|LLT|LLE|LCS|LLS|WNE|WLT|WLE|WCS|WLS) _ x (FlagLT_ULT)) => x
466 (CMOV(QEQ|QGT|QGE|QHI|QCC|LEQ|LGT|LGE|LHI|LCC|WEQ|WGT|WGE|WHI|WCC) y _ (FlagLT_ULT)) => y
467 (CMOV(QNE|QLT|QLE|QHI|QCC|LNE|LLT|LLE|LHI|LCC|WNE|WLT|WLE|WHI|WCC) _ x (FlagLT_UGT)) => x
468 (CMOV(QEQ|QGT|QGE|QCS|QLS|LEQ|LGT|LGE|LCS|LLS|WEQ|WGT|WGE|WCS|WLS) y _ (FlagLT_UGT)) => y
469
470 // Miscellaneous
471 (IsNonNil p) => (SETNE (TESTQ p p))
472 (IsInBounds idx len) => (SETB (CMPQ idx len))
473 (IsSliceInBounds idx len) => (SETBE (CMPQ idx len))
474 (NilCheck ...) => (LoweredNilCheck ...)
475 (GetG mem) && v.Block.Func.OwnAux.Fn.ABI() != obj.ABIInternal => (LoweredGetG mem) // only lower in old ABI. in new ABI we have a G register.
476 (GetClosurePtr ...) => (LoweredGetClosurePtr ...)
477 (GetCallerPC ...) => (LoweredGetCallerPC ...)
478 (GetCallerSP ...) => (LoweredGetCallerSP ...)
479
480 (HasCPUFeature {s}) => (SETNE (CMPLconst [0] (LoweredHasCPUFeature {s})))
481 (Addr {sym} base) => (LEAQ {sym} base)
482 (LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (LEAQ {sym} (SPanchored base mem))
483 (LocalAddr <t> {sym} base _) && !t.Elem().HasPointers() => (LEAQ {sym} base)
484
485 (MOVBstore [off] {sym} ptr y:(SETL x) mem) && y.Uses == 1 => (SETLstore [off] {sym} ptr x mem)
486 (MOVBstore [off] {sym} ptr y:(SETLE x) mem) && y.Uses == 1 => (SETLEstore [off] {sym} ptr x mem)
487 (MOVBstore [off] {sym} ptr y:(SETG x) mem) && y.Uses == 1 => (SETGstore [off] {sym} ptr x mem)
488 (MOVBstore [off] {sym} ptr y:(SETGE x) mem) && y.Uses == 1 => (SETGEstore [off] {sym} ptr x mem)
489 (MOVBstore [off] {sym} ptr y:(SETEQ x) mem) && y.Uses == 1 => (SETEQstore [off] {sym} ptr x mem)
490 (MOVBstore [off] {sym} ptr y:(SETNE x) mem) && y.Uses == 1 => (SETNEstore [off] {sym} ptr x mem)
491 (MOVBstore [off] {sym} ptr y:(SETB x) mem) && y.Uses == 1 => (SETBstore [off] {sym} ptr x mem)
492 (MOVBstore [off] {sym} ptr y:(SETBE x) mem) && y.Uses == 1 => (SETBEstore [off] {sym} ptr x mem)
493 (MOVBstore [off] {sym} ptr y:(SETA x) mem) && y.Uses == 1 => (SETAstore [off] {sym} ptr x mem)
494 (MOVBstore [off] {sym} ptr y:(SETAE x) mem) && y.Uses == 1 => (SETAEstore [off] {sym} ptr x mem)
495
496 // block rewrites
497 (If (SETL cmp) yes no) => (LT cmp yes no)
498 (If (SETLE cmp) yes no) => (LE cmp yes no)
499 (If (SETG cmp) yes no) => (GT cmp yes no)
500 (If (SETGE cmp) yes no) => (GE cmp yes no)
501 (If (SETEQ cmp) yes no) => (EQ cmp yes no)
502 (If (SETNE cmp) yes no) => (NE cmp yes no)
503 (If (SETB cmp) yes no) => (ULT cmp yes no)
504 (If (SETBE cmp) yes no) => (ULE cmp yes no)
505 (If (SETA cmp) yes no) => (UGT cmp yes no)
506 (If (SETAE cmp) yes no) => (UGE cmp yes no)
507 (If (SETO cmp) yes no) => (OS cmp yes no)
508
509 // Special case for floating point - LF/LEF not generated
510 (If (SETGF cmp) yes no) => (UGT cmp yes no)
511 (If (SETGEF cmp) yes no) => (UGE cmp yes no)
512 (If (SETEQF cmp) yes no) => (EQF cmp yes no)
513 (If (SETNEF cmp) yes no) => (NEF cmp yes no)
514
515 (If cond yes no) => (NE (TESTB cond cond) yes no)
516
517 (JumpTable idx) => (JUMPTABLE {makeJumpTableSym(b)} idx (LEAQ <typ.Uintptr> {makeJumpTableSym(b)} (SB)))
518
519 // Atomic loads. Other than preserving their ordering with respect to other loads, nothing special here.
520 (AtomicLoad8 ptr mem) => (MOVBatomicload ptr mem)
521 (AtomicLoad32 ptr mem) => (MOVLatomicload ptr mem)
522 (AtomicLoad64 ptr mem) => (MOVQatomicload ptr mem)
523 (AtomicLoadPtr ptr mem) => (MOVQatomicload ptr mem)
524
525 // Atomic stores. We use XCHG to prevent the hardware reordering a subsequent load.
526 // TODO: most runtime uses of atomic stores don't need that property. Use normal stores for those?
527 (AtomicStore8 ptr val mem) => (Select1 (XCHGB <types.NewTuple(typ.UInt8,types.TypeMem)> val ptr mem))
528 (AtomicStore32 ptr val mem) => (Select1 (XCHGL <types.NewTuple(typ.UInt32,types.TypeMem)> val ptr mem))
529 (AtomicStore64 ptr val mem) => (Select1 (XCHGQ <types.NewTuple(typ.UInt64,types.TypeMem)> val ptr mem))
530 (AtomicStorePtrNoWB ptr val mem) => (Select1 (XCHGQ <types.NewTuple(typ.BytePtr,types.TypeMem)> val ptr mem))
531
532 // Atomic exchanges.
533 (AtomicExchange8 ptr val mem) => (XCHGB val ptr mem)
534 (AtomicExchange32 ptr val mem) => (XCHGL val ptr mem)
535 (AtomicExchange64 ptr val mem) => (XCHGQ val ptr mem)
536
537 // Atomic adds.
538 (AtomicAdd32 ptr val mem) => (AddTupleFirst32 val (XADDLlock val ptr mem))
539 (AtomicAdd64 ptr val mem) => (AddTupleFirst64 val (XADDQlock val ptr mem))
540 (Select0 <t> (AddTupleFirst32 val tuple)) => (ADDL val (Select0 <t> tuple))
541 (Select1 (AddTupleFirst32 _ tuple)) => (Select1 tuple)
542 (Select0 <t> (AddTupleFirst64 val tuple)) => (ADDQ val (Select0 <t> tuple))
543 (Select1 (AddTupleFirst64 _ tuple)) => (Select1 tuple)
544
545 // Atomic compare and swap.
546 (AtomicCompareAndSwap32 ptr old new_ mem) => (CMPXCHGLlock ptr old new_ mem)
547 (AtomicCompareAndSwap64 ptr old new_ mem) => (CMPXCHGQlock ptr old new_ mem)
548
549 // Atomic memory logical operations (old style).
550 (AtomicAnd8 ptr val mem) => (ANDBlock ptr val mem)
551 (AtomicAnd32 ptr val mem) => (ANDLlock ptr val mem)
552 (AtomicOr8 ptr val mem) => (ORBlock ptr val mem)
553 (AtomicOr32 ptr val mem) => (ORLlock ptr val mem)
554
555 // Atomic memory logical operations (new style).
556 (Atomic(And64|And32|Or64|Or32)value ptr val mem) => (LoweredAtomic(And64|And32|Or64|Or32) ptr val mem)
557
558 // Write barrier.
559 (WB ...) => (LoweredWB ...)
560
561 (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
562 (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
563 (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
564
565 // lowering rotates
566 (RotateLeft8 ...) => (ROLB ...)
567 (RotateLeft16 ...) => (ROLW ...)
568 (RotateLeft32 ...) => (ROLL ...)
569 (RotateLeft64 ...) => (ROLQ ...)
570
571 // ***************************
572 // Above: lowering rules
573 // Below: optimizations
574 // ***************************
575 // TODO: Should the optimizations be a separate pass?
576
577 // Fold boolean tests into blocks
578 (NE (TESTB (SETL cmp) (SETL cmp)) yes no) => (LT cmp yes no)
579 (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE cmp yes no)
580 (NE (TESTB (SETG cmp) (SETG cmp)) yes no) => (GT cmp yes no)
581 (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE cmp yes no)
582 (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ cmp yes no)
583 (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE cmp yes no)
584 (NE (TESTB (SETB cmp) (SETB cmp)) yes no) => (ULT cmp yes no)
585 (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no)
586 (NE (TESTB (SETA cmp) (SETA cmp)) yes no) => (UGT cmp yes no)
587 (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no)
588 (NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no)
589
590 // Unsigned comparisons to 0/1
591 (ULT (TEST(Q|L|W|B) x x) yes no) => (First no yes)
592 (UGE (TEST(Q|L|W|B) x x) yes no) => (First yes no)
593 (SETB (TEST(Q|L|W|B) x x)) => (ConstBool [false])
594 (SETAE (TEST(Q|L|W|B) x x)) => (ConstBool [true])
595
596 // x & 1 != 0 -> x & 1
597 (SETNE (TEST(B|W)const [1] x)) => (AND(L|L)const [1] x)
598 (SETB (BT(L|Q)const [0] x)) => (AND(L|Q)const [1] x)
599 // x & 1 == 0 -> (x & 1) ^ 1
600 (SETAE (BT(L|Q)const [0] x)) => (XORLconst [1] (ANDLconst <typ.Bool> [1] x))
601
602 // Shorten compare by rewriting x < 128 as x <= 127, which can be encoded in a single-byte immediate on x86.
603 (SETL c:(CMP(Q|L)const [128] x)) && c.Uses == 1 => (SETLE (CMP(Q|L)const [127] x))
604 (SETB c:(CMP(Q|L)const [128] x)) && c.Uses == 1 => (SETBE (CMP(Q|L)const [127] x))
605
606 // x >= 128 -> x > 127
607 (SETGE c:(CMP(Q|L)const [128] x)) && c.Uses == 1 => (SETG (CMP(Q|L)const [127] x))
608 (SETAE c:(CMP(Q|L)const [128] x)) && c.Uses == 1 => (SETA (CMP(Q|L)const [127] x))
609
610 (CMOVQLT x y c:(CMP(Q|L)const [128] z)) && c.Uses == 1 => (CMOVQLE x y (CMP(Q|L)const [127] z))
611 (CMOVLLT x y c:(CMP(Q|L)const [128] z)) && c.Uses == 1 => (CMOVLLE x y (CMP(Q|L)const [127] z))
612 (LT c:(CMP(Q|L)const [128] z) yes no) && c.Uses == 1 => (LE (CMP(Q|L)const [127] z) yes no)
613 (CMOVQGE x y c:(CMP(Q|L)const [128] z)) && c.Uses == 1 => (CMOVQGT x y (CMP(Q|L)const [127] z))
614 (CMOVLGE x y c:(CMP(Q|L)const [128] z)) && c.Uses == 1 => (CMOVLGT x y (CMP(Q|L)const [127] z))
615 (GE c:(CMP(Q|L)const [128] z) yes no) && c.Uses == 1 => (GT (CMP(Q|L)const [127] z) yes no)
616
617 // Recognize bit tests: a&(1<<b) != 0 for b suitably bounded
618 // Note that BTx instructions use the carry bit, so we need to convert tests for zero flag
619 // into tests for carry flags.
620 // ULT and SETB check the carry flag; they are identical to CS and SETCS. Same, mutatis
621 // mutandis, for UGE and SETAE, and CC and SETCC.
622 ((NE|EQ) (TESTL (SHLL (MOVLconst [1]) x) y)) => ((ULT|UGE) (BTL x y))
623 ((NE|EQ) (TESTQ (SHLQ (MOVQconst [1]) x) y)) => ((ULT|UGE) (BTQ x y))
624 ((NE|EQ) (TESTLconst [c] x)) && isUint32PowerOfTwo(int64(c))
625 => ((ULT|UGE) (BTLconst [int8(log32(c))] x))
626 ((NE|EQ) (TESTQconst [c] x)) && isUint64PowerOfTwo(int64(c))
627 => ((ULT|UGE) (BTQconst [int8(log32(c))] x))
628 ((NE|EQ) (TESTQ (MOVQconst [c]) x)) && isUint64PowerOfTwo(c)
629 => ((ULT|UGE) (BTQconst [int8(log64(c))] x))
630 (SET(NE|EQ) (TESTL (SHLL (MOVLconst [1]) x) y)) => (SET(B|AE) (BTL x y))
631 (SET(NE|EQ) (TESTQ (SHLQ (MOVQconst [1]) x) y)) => (SET(B|AE) (BTQ x y))
632 (SET(NE|EQ) (TESTLconst [c] x)) && isUint32PowerOfTwo(int64(c))
633 => (SET(B|AE) (BTLconst [int8(log32(c))] x))
634 (SET(NE|EQ) (TESTQconst [c] x)) && isUint64PowerOfTwo(int64(c))
635 => (SET(B|AE) (BTQconst [int8(log32(c))] x))
636 (SET(NE|EQ) (TESTQ (MOVQconst [c]) x)) && isUint64PowerOfTwo(c)
637 => (SET(B|AE) (BTQconst [int8(log64(c))] x))
638 // SET..store variant
639 (SET(NE|EQ)store [off] {sym} ptr (TESTL (SHLL (MOVLconst [1]) x) y) mem)
640 => (SET(B|AE)store [off] {sym} ptr (BTL x y) mem)
641 (SET(NE|EQ)store [off] {sym} ptr (TESTQ (SHLQ (MOVQconst [1]) x) y) mem)
642 => (SET(B|AE)store [off] {sym} ptr (BTQ x y) mem)
643 (SET(NE|EQ)store [off] {sym} ptr (TESTLconst [c] x) mem) && isUint32PowerOfTwo(int64(c))
644 => (SET(B|AE)store [off] {sym} ptr (BTLconst [int8(log32(c))] x) mem)
645 (SET(NE|EQ)store [off] {sym} ptr (TESTQconst [c] x) mem) && isUint64PowerOfTwo(int64(c))
646 => (SET(B|AE)store [off] {sym} ptr (BTQconst [int8(log32(c))] x) mem)
647 (SET(NE|EQ)store [off] {sym} ptr (TESTQ (MOVQconst [c]) x) mem) && isUint64PowerOfTwo(c)
648 => (SET(B|AE)store [off] {sym} ptr (BTQconst [int8(log64(c))] x) mem)
649
650 // Handle bit-testing in the form (a>>b)&1 != 0 by building the above rules
651 // and further combining shifts.
652 (BT(Q|L)const [c] (SHRQconst [d] x)) && (c+d)<64 => (BTQconst [c+d] x)
653 (BT(Q|L)const [c] (ADDQ x x)) && c>1 => (BT(Q|L)const [c-1] x)
654 (BT(Q|L)const [c] (SHLQconst [d] x)) && c>d => (BT(Q|L)const [c-d] x)
655 (BT(Q|L)const [0] s:(SHRQ x y)) => (BTQ y x)
656 (BTLconst [c] (SHRLconst [d] x)) && (c+d)<32 => (BTLconst [c+d] x)
657 (BTLconst [c] (ADDL x x)) && c>1 => (BTLconst [c-1] x)
658 (BTLconst [c] (SHLLconst [d] x)) && c>d => (BTLconst [c-d] x)
659 (BTLconst [0] s:(SHR(L|XL) x y)) => (BTL y x)
660
661 // Rewrite a & 1 != 1 into a & 1 == 0.
662 // Among other things, this lets us turn (a>>b)&1 != 1 into a bit test.
663 (SET(NE|EQ) (CMPLconst [1] s:(ANDLconst [1] _))) => (SET(EQ|NE) (CMPLconst [0] s))
664 (SET(NE|EQ)store [off] {sym} ptr (CMPLconst [1] s:(ANDLconst [1] _)) mem) => (SET(EQ|NE)store [off] {sym} ptr (CMPLconst [0] s) mem)
665 (SET(NE|EQ) (CMPQconst [1] s:(ANDQconst [1] _))) => (SET(EQ|NE) (CMPQconst [0] s))
666 (SET(NE|EQ)store [off] {sym} ptr (CMPQconst [1] s:(ANDQconst [1] _)) mem) => (SET(EQ|NE)store [off] {sym} ptr (CMPQconst [0] s) mem)
667
668 // Recognize bit setting (a |= 1<<b) and toggling (a ^= 1<<b)
669 (OR(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y) x) => (BTS(Q|L) x y)
670 (XOR(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y) x) => (BTC(Q|L) x y)
671 // Note: only convert OR/XOR to BTS/BTC if the constant wouldn't fit in
672 // the constant field of the OR/XOR instruction. See issue 61694.
673 ((OR|XOR)Q (MOVQconst [c]) x) && isUint64PowerOfTwo(c) && uint64(c) >= 1<<31 => (BT(S|C)Qconst [int8(log64(c))] x)
674
675 // Recognize bit clearing: a &^= 1<<b
676 (AND(Q|L) (NOT(Q|L) (SHL(Q|L) (MOV(Q|L)const [1]) y)) x) => (BTR(Q|L) x y)
677 (ANDN(Q|L) x (SHL(Q|L) (MOV(Q|L)const [1]) y)) => (BTR(Q|L) x y)
678 // Note: only convert AND to BTR if the constant wouldn't fit in
679 // the constant field of the AND instruction. See issue 61694.
680 (ANDQ (MOVQconst [c]) x) && isUint64PowerOfTwo(^c) && uint64(^c) >= 1<<31 => (BTRQconst [int8(log64(^c))] x)
681
682 // Special-case bit patterns on first/last bit.
683 // generic.rules changes ANDs of high-part/low-part masks into a couple of shifts,
684 // for instance:
685 // x & 0xFFFF0000 -> (x >> 16) << 16
686 // x & 0x80000000 -> (x >> 31) << 31
687 //
688 // In case the mask is just one bit (like second example above), it conflicts
689 // with the above rules to detect bit-testing / bit-clearing of first/last bit.
690 // We thus special-case them, by detecting the shift patterns.
691
692 // Special case resetting first/last bit
693 (ADD(L|Q) (SHR(L|Q)const [1] x) (SHR(L|Q)const [1] x))
694 => (AND(L|Q)const [-2] x)
695 (SHRLconst [1] (ADDL x x))
696 => (ANDLconst [0x7fffffff] x)
697 (SHRQconst [1] (ADDQ x x))
698 => (BTRQconst [63] x)
699
700 // Special case testing first/last bit (with double-shift generated by generic.rules)
701 ((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHLQconst [63] (SHRQconst [63] x)) z2)) && z1==z2
702 => ((SETB|SETAE|ULT|UGE) (BTQconst [63] x))
703 ((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHLLconst [31] (SHRQconst [31] x)) z2)) && z1==z2
704 => ((SETB|SETAE|ULT|UGE) (BTQconst [31] x))
705 (SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHLQconst [63] (SHRQconst [63] x)) z2) mem) && z1==z2
706 => (SET(B|AE)store [off] {sym} ptr (BTQconst [63] x) mem)
707 (SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHLLconst [31] (SHRLconst [31] x)) z2) mem) && z1==z2
708 => (SET(B|AE)store [off] {sym} ptr (BTLconst [31] x) mem)
709
710 ((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHRQconst [63] (SHLQconst [63] x)) z2)) && z1==z2
711 => ((SETB|SETAE|ULT|UGE) (BTQconst [0] x))
712 ((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHRLconst [31] (SHLLconst [31] x)) z2)) && z1==z2
713 => ((SETB|SETAE|ULT|UGE) (BTLconst [0] x))
714 (SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHRQconst [63] (SHLQconst [63] x)) z2) mem) && z1==z2
715 => (SET(B|AE)store [off] {sym} ptr (BTQconst [0] x) mem)
716 (SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHRLconst [31] (SHLLconst [31] x)) z2) mem) && z1==z2
717 => (SET(B|AE)store [off] {sym} ptr (BTLconst [0] x) mem)
718
719 // Special-case manually testing last bit with "a>>63 != 0" (without "&1")
720 ((SETNE|SETEQ|NE|EQ) (TESTQ z1:(SHRQconst [63] x) z2)) && z1==z2
721 => ((SETB|SETAE|ULT|UGE) (BTQconst [63] x))
722 ((SETNE|SETEQ|NE|EQ) (TESTL z1:(SHRLconst [31] x) z2)) && z1==z2
723 => ((SETB|SETAE|ULT|UGE) (BTLconst [31] x))
724 (SET(NE|EQ)store [off] {sym} ptr (TESTQ z1:(SHRQconst [63] x) z2) mem) && z1==z2
725 => (SET(B|AE)store [off] {sym} ptr (BTQconst [63] x) mem)
726 (SET(NE|EQ)store [off] {sym} ptr (TESTL z1:(SHRLconst [31] x) z2) mem) && z1==z2
727 => (SET(B|AE)store [off] {sym} ptr (BTLconst [31] x) mem)
728
729 // Fold combinations of bit ops on same bit. An example is math.Copysign(c,-1)
730 (BTSQconst [c] (BTRQconst [c] x)) => (BTSQconst [c] x)
731 (BTSQconst [c] (BTCQconst [c] x)) => (BTSQconst [c] x)
732 (BTRQconst [c] (BTSQconst [c] x)) => (BTRQconst [c] x)
733 (BTRQconst [c] (BTCQconst [c] x)) => (BTRQconst [c] x)
734
735 // Fold boolean negation into SETcc.
736 (XORLconst [1] (SETNE x)) => (SETEQ x)
737 (XORLconst [1] (SETEQ x)) => (SETNE x)
738 (XORLconst [1] (SETL x)) => (SETGE x)
739 (XORLconst [1] (SETGE x)) => (SETL x)
740 (XORLconst [1] (SETLE x)) => (SETG x)
741 (XORLconst [1] (SETG x)) => (SETLE x)
742 (XORLconst [1] (SETB x)) => (SETAE x)
743 (XORLconst [1] (SETAE x)) => (SETB x)
744 (XORLconst [1] (SETBE x)) => (SETA x)
745 (XORLconst [1] (SETA x)) => (SETBE x)
746
747 // Special case for floating point - LF/LEF not generated
748 (NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) => (UGT cmp yes no)
749 (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE cmp yes no)
750 (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF cmp yes no)
751 (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF cmp yes no)
752
753 // Disabled because it interferes with the pattern match above and makes worse code.
754 // (SETNEF x) => (ORQ (SETNE <typ.Int8> x) (SETNAN <typ.Int8> x))
755 // (SETEQF x) => (ANDQ (SETEQ <typ.Int8> x) (SETORD <typ.Int8> x))
756
757 // fold constants into instructions
758 (ADDQ x (MOVQconst <t> [c])) && is32Bit(c) && !t.IsPtr() => (ADDQconst [int32(c)] x)
759 (ADDQ x (MOVLconst [c])) => (ADDQconst [c] x)
760 (ADDL x (MOVLconst [c])) => (ADDLconst [c] x)
761
762 (SUBQ x (MOVQconst [c])) && is32Bit(c) => (SUBQconst x [int32(c)])
763 (SUBQ (MOVQconst [c]) x) && is32Bit(c) => (NEGQ (SUBQconst <v.Type> x [int32(c)]))
764 (SUBL x (MOVLconst [c])) => (SUBLconst x [c])
765 (SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c]))
766
767 (MULQ x (MOVQconst [c])) && is32Bit(c) => (MULQconst [int32(c)] x)
768 (MULL x (MOVLconst [c])) => (MULLconst [c] x)
769
770 (ANDQ x (MOVQconst [c])) && is32Bit(c) => (ANDQconst [int32(c)] x)
771 (ANDL x (MOVLconst [c])) => (ANDLconst [c] x)
772
773 (AND(L|Q)const [c] (AND(L|Q)const [d] x)) => (AND(L|Q)const [c & d] x)
774 (XOR(L|Q)const [c] (XOR(L|Q)const [d] x)) => (XOR(L|Q)const [c ^ d] x)
775 (OR(L|Q)const [c] (OR(L|Q)const [d] x)) => (OR(L|Q)const [c | d] x)
776
777 (MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x)
778 (MULQconst [c] (MULQconst [d] x)) && is32Bit(int64(c)*int64(d)) => (MULQconst [c * d] x)
779
780 (ORQ x (MOVQconst [c])) && is32Bit(c) => (ORQconst [int32(c)] x)
781 (ORQ x (MOVLconst [c])) => (ORQconst [c] x)
782 (ORL x (MOVLconst [c])) => (ORLconst [c] x)
783
784 (XORQ x (MOVQconst [c])) && is32Bit(c) => (XORQconst [int32(c)] x)
785 (XORL x (MOVLconst [c])) => (XORLconst [c] x)
786
787 (SHLQ x (MOV(Q|L)const [c])) => (SHLQconst [int8(c&63)] x)
788 (SHLL x (MOV(Q|L)const [c])) => (SHLLconst [int8(c&31)] x)
789
790 (SHRQ x (MOV(Q|L)const [c])) => (SHRQconst [int8(c&63)] x)
791 (SHRL x (MOV(Q|L)const [c])) => (SHRLconst [int8(c&31)] x)
792 (SHRW x (MOV(Q|L)const [c])) && c&31 < 16 => (SHRWconst [int8(c&31)] x)
793 (SHRW _ (MOV(Q|L)const [c])) && c&31 >= 16 => (MOVLconst [0])
794 (SHRB x (MOV(Q|L)const [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x)
795 (SHRB _ (MOV(Q|L)const [c])) && c&31 >= 8 => (MOVLconst [0])
796
797 (SARQ x (MOV(Q|L)const [c])) => (SARQconst [int8(c&63)] x)
798 (SARL x (MOV(Q|L)const [c])) => (SARLconst [int8(c&31)] x)
799 (SARW x (MOV(Q|L)const [c])) => (SARWconst [int8(min(int64(c)&31,15))] x)
800 (SARB x (MOV(Q|L)const [c])) => (SARBconst [int8(min(int64(c)&31,7))] x)
801
802 // Operations which don't affect the low 6/5 bits of the shift amount are NOPs.
803 ((SHLQ|SHRQ|SARQ) x (ADDQconst [c] y)) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x y)
804 ((SHLQ|SHRQ|SARQ) x (NEGQ <t> (ADDQconst [c] y))) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x (NEGQ <t> y))
805 ((SHLQ|SHRQ|SARQ) x (ANDQconst [c] y)) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x y)
806 ((SHLQ|SHRQ|SARQ) x (NEGQ <t> (ANDQconst [c] y))) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x (NEGQ <t> y))
807
808 ((SHLL|SHRL|SARL) x (ADDQconst [c] y)) && c & 31 == 0 => ((SHLL|SHRL|SARL) x y)
809 ((SHLL|SHRL|SARL) x (NEGQ <t> (ADDQconst [c] y))) && c & 31 == 0 => ((SHLL|SHRL|SARL) x (NEGQ <t> y))
810 ((SHLL|SHRL|SARL) x (ANDQconst [c] y)) && c & 31 == 31 => ((SHLL|SHRL|SARL) x y)
811 ((SHLL|SHRL|SARL) x (NEGQ <t> (ANDQconst [c] y))) && c & 31 == 31 => ((SHLL|SHRL|SARL) x (NEGQ <t> y))
812
813 ((SHLQ|SHRQ|SARQ) x (ADDLconst [c] y)) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x y)
814 ((SHLQ|SHRQ|SARQ) x (NEGL <t> (ADDLconst [c] y))) && c & 63 == 0 => ((SHLQ|SHRQ|SARQ) x (NEGL <t> y))
815 ((SHLQ|SHRQ|SARQ) x (ANDLconst [c] y)) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x y)
816 ((SHLQ|SHRQ|SARQ) x (NEGL <t> (ANDLconst [c] y))) && c & 63 == 63 => ((SHLQ|SHRQ|SARQ) x (NEGL <t> y))
817
818 ((SHLL|SHRL|SARL) x (ADDLconst [c] y)) && c & 31 == 0 => ((SHLL|SHRL|SARL) x y)
819 ((SHLL|SHRL|SARL) x (NEGL <t> (ADDLconst [c] y))) && c & 31 == 0 => ((SHLL|SHRL|SARL) x (NEGL <t> y))
820 ((SHLL|SHRL|SARL) x (ANDLconst [c] y)) && c & 31 == 31 => ((SHLL|SHRL|SARL) x y)
821 ((SHLL|SHRL|SARL) x (NEGL <t> (ANDLconst [c] y))) && c & 31 == 31 => ((SHLL|SHRL|SARL) x (NEGL <t> y))
822
823 // rotate left negative = rotate right
824 (ROLQ x (NEG(Q|L) y)) => (RORQ x y)
825 (ROLL x (NEG(Q|L) y)) => (RORL x y)
826 (ROLW x (NEG(Q|L) y)) => (RORW x y)
827 (ROLB x (NEG(Q|L) y)) => (RORB x y)
828
829 // rotate right negative = rotate left
830 (RORQ x (NEG(Q|L) y)) => (ROLQ x y)
831 (RORL x (NEG(Q|L) y)) => (ROLL x y)
832 (RORW x (NEG(Q|L) y)) => (ROLW x y)
833 (RORB x (NEG(Q|L) y)) => (ROLB x y)
834
835 // rotate by constants
836 (ROLQ x (MOV(Q|L)const [c])) => (ROLQconst [int8(c&63)] x)
837 (ROLL x (MOV(Q|L)const [c])) => (ROLLconst [int8(c&31)] x)
838 (ROLW x (MOV(Q|L)const [c])) => (ROLWconst [int8(c&15)] x)
839 (ROLB x (MOV(Q|L)const [c])) => (ROLBconst [int8(c&7) ] x)
840
841 (RORQ x (MOV(Q|L)const [c])) => (ROLQconst [int8((-c)&63)] x)
842 (RORL x (MOV(Q|L)const [c])) => (ROLLconst [int8((-c)&31)] x)
843 (RORW x (MOV(Q|L)const [c])) => (ROLWconst [int8((-c)&15)] x)
844 (RORB x (MOV(Q|L)const [c])) => (ROLBconst [int8((-c)&7) ] x)
845
846 // Constant shift simplifications
847 ((SHLQ|SHRQ|SARQ)const x [0]) => x
848 ((SHLL|SHRL|SARL)const x [0]) => x
849 ((SHRW|SARW)const x [0]) => x
850 ((SHRB|SARB)const x [0]) => x
851 ((ROLQ|ROLL|ROLW|ROLB)const x [0]) => x
852
853 // Multi-register shifts
854 (ORQ (SH(R|L)Q lo bits) (SH(L|R)Q hi (NEGQ bits))) => (SH(R|L)DQ lo hi bits)
855 (ORQ (SH(R|L)XQ lo bits) (SH(L|R)XQ hi (NEGQ bits))) => (SH(R|L)DQ lo hi bits)
856
857 // Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
858 // because the x86 instructions are defined to use all 5 bits of the shift even
859 // for the small shifts. I don't think we'll ever generate a weird shift (e.g.
860 // (SHRW x (MOVLconst [24])), but just in case.
861
862 (CMPQ x (MOVQconst [c])) && is32Bit(c) => (CMPQconst x [int32(c)])
863 (CMPQ (MOVQconst [c]) x) && is32Bit(c) => (InvertFlags (CMPQconst x [int32(c)]))
864 (CMPL x (MOVLconst [c])) => (CMPLconst x [c])
865 (CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c]))
866 (CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)])
867 (CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)]))
868 (CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)])
869 (CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)]))
870
871 // Canonicalize the order of arguments to comparisons - helps with CSE.
872 (CMP(Q|L|W|B) x y) && canonLessThan(x,y) => (InvertFlags (CMP(Q|L|W|B) y x))
873
874 // Using MOVZX instead of AND is cheaper.
875 (AND(Q|L)const [ 0xFF] x) => (MOVBQZX x)
876 (AND(Q|L)const [0xFFFF] x) => (MOVWQZX x)
877 // This rule is currently invalid because 0xFFFFFFFF is not representable by a signed int32.
878 // Commenting out for now, because it also can't trigger because of the is32bit guard on the
879 // ANDQconst lowering-rule, above, prevents 0xFFFFFFFF from matching (for the same reason)
880 // Using an alternate form of this rule segfaults some binaries because of
881 // adverse interactions with other passes.
882 // (ANDQconst [0xFFFFFFFF] x) => (MOVLQZX x)
883
884 // strength reduction
885 // Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
886 // 1 - addq, shlq, leaq, negq, subq
887 // 3 - imulq
888 // This limits the rewrites to two instructions.
889 // Note that negq always operates in-place,
890 // which can require a register-register move
891 // to preserve the original value,
892 // so it must be used with care.
893 (MUL(Q|L)const [-9] x) => (NEG(Q|L) (LEA(Q|L)8 <v.Type> x x))
894 (MUL(Q|L)const [-5] x) => (NEG(Q|L) (LEA(Q|L)4 <v.Type> x x))
895 (MUL(Q|L)const [-3] x) => (NEG(Q|L) (LEA(Q|L)2 <v.Type> x x))
896 (MUL(Q|L)const [-1] x) => (NEG(Q|L) x)
897 (MUL(Q|L)const [ 0] _) => (MOV(Q|L)const [0])
898 (MUL(Q|L)const [ 1] x) => x
899 (MUL(Q|L)const [ 3] x) => (LEA(Q|L)2 x x)
900 (MUL(Q|L)const [ 5] x) => (LEA(Q|L)4 x x)
901 (MUL(Q|L)const [ 7] x) => (LEA(Q|L)2 x (LEA(Q|L)2 <v.Type> x x))
902 (MUL(Q|L)const [ 9] x) => (LEA(Q|L)8 x x)
903 (MUL(Q|L)const [11] x) => (LEA(Q|L)2 x (LEA(Q|L)4 <v.Type> x x))
904 (MUL(Q|L)const [13] x) => (LEA(Q|L)4 x (LEA(Q|L)2 <v.Type> x x))
905 (MUL(Q|L)const [19] x) => (LEA(Q|L)2 x (LEA(Q|L)8 <v.Type> x x))
906 (MUL(Q|L)const [21] x) => (LEA(Q|L)4 x (LEA(Q|L)4 <v.Type> x x))
907 (MUL(Q|L)const [25] x) => (LEA(Q|L)8 x (LEA(Q|L)2 <v.Type> x x))
908 (MUL(Q|L)const [27] x) => (LEA(Q|L)8 (LEA(Q|L)2 <v.Type> x x) (LEA(Q|L)2 <v.Type> x x))
909 (MUL(Q|L)const [37] x) => (LEA(Q|L)4 x (LEA(Q|L)8 <v.Type> x x))
910 (MUL(Q|L)const [41] x) => (LEA(Q|L)8 x (LEA(Q|L)4 <v.Type> x x))
911 (MUL(Q|L)const [45] x) => (LEA(Q|L)8 (LEA(Q|L)4 <v.Type> x x) (LEA(Q|L)4 <v.Type> x x))
912 (MUL(Q|L)const [73] x) => (LEA(Q|L)8 x (LEA(Q|L)8 <v.Type> x x))
913 (MUL(Q|L)const [81] x) => (LEA(Q|L)8 (LEA(Q|L)8 <v.Type> x x) (LEA(Q|L)8 <v.Type> x x))
914
915 (MUL(Q|L)const [c] x) && isPowerOfTwo(int64(c)+1) && c >= 15 => (SUB(Q|L) (SHL(Q|L)const <v.Type> [int8(log64(int64(c)+1))] x) x)
916 (MUL(Q|L)const [c] x) && isPowerOfTwo(c-1) && c >= 17 => (LEA(Q|L)1 (SHL(Q|L)const <v.Type> [int8(log32(c-1))] x) x)
917 (MUL(Q|L)const [c] x) && isPowerOfTwo(c-2) && c >= 34 => (LEA(Q|L)2 (SHL(Q|L)const <v.Type> [int8(log32(c-2))] x) x)
918 (MUL(Q|L)const [c] x) && isPowerOfTwo(c-4) && c >= 68 => (LEA(Q|L)4 (SHL(Q|L)const <v.Type> [int8(log32(c-4))] x) x)
919 (MUL(Q|L)const [c] x) && isPowerOfTwo(c-8) && c >= 136 => (LEA(Q|L)8 (SHL(Q|L)const <v.Type> [int8(log32(c-8))] x) x)
920 (MUL(Q|L)const [c] x) && c%3 == 0 && isPowerOfTwo(c/3) => (SHL(Q|L)const [int8(log32(c/3))] (LEA(Q|L)2 <v.Type> x x))
921 (MUL(Q|L)const [c] x) && c%5 == 0 && isPowerOfTwo(c/5) => (SHL(Q|L)const [int8(log32(c/5))] (LEA(Q|L)4 <v.Type> x x))
922 (MUL(Q|L)const [c] x) && c%9 == 0 && isPowerOfTwo(c/9) => (SHL(Q|L)const [int8(log32(c/9))] (LEA(Q|L)8 <v.Type> x x))
923
924 // Prefer addition when shifting left by one
925 (SHL(Q|L)const [1] x) => (ADD(Q|L) x x)
926
927 // combine add/shift into LEAQ/LEAL
928 (ADD(L|Q) x (SHL(L|Q)const [3] y)) => (LEA(L|Q)8 x y)
929 (ADD(L|Q) x (SHL(L|Q)const [2] y)) => (LEA(L|Q)4 x y)
930 (ADD(L|Q) x (ADD(L|Q) y y)) => (LEA(L|Q)2 x y)
931 (ADD(L|Q) x (ADD(L|Q) x y)) => (LEA(L|Q)2 y x)
932
933 // combine ADDQ/ADDQconst into LEAQ1/LEAL1
934 (ADD(Q|L)const [c] (ADD(Q|L) x y)) => (LEA(Q|L)1 [c] x y)
935 (ADD(Q|L) (ADD(Q|L)const [c] x) y) => (LEA(Q|L)1 [c] x y)
936 (ADD(Q|L)const [c] (ADD(Q|L) x x)) => (LEA(Q|L)1 [c] x x)
937
938 // fold ADDQ/ADDL into LEAQ/LEAL
939 (ADD(Q|L)const [c] (LEA(Q|L) [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L) [c+d] {s} x)
940 (LEA(Q|L) [c] {s} (ADD(Q|L)const [d] x)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L) [c+d] {s} x)
941 (LEA(Q|L) [c] {s} (ADD(Q|L) x y)) && x.Op != OpSB && y.Op != OpSB => (LEA(Q|L)1 [c] {s} x y)
942 (ADD(Q|L) x (LEA(Q|L) [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEA(Q|L)1 [c] {s} x y)
943
944 // fold ADDQconst/ADDLconst into LEAQx/LEALx
945 (ADD(Q|L)const [c] (LEA(Q|L)1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)1 [c+d] {s} x y)
946 (ADD(Q|L)const [c] (LEA(Q|L)2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)2 [c+d] {s} x y)
947 (ADD(Q|L)const [c] (LEA(Q|L)4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)4 [c+d] {s} x y)
948 (ADD(Q|L)const [c] (LEA(Q|L)8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEA(Q|L)8 [c+d] {s} x y)
949 (LEA(Q|L)1 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)1 [c+d] {s} x y)
950 (LEA(Q|L)2 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)2 [c+d] {s} x y)
951 (LEA(Q|L)2 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEA(Q|L)2 [c+2*d] {s} x y)
952 (LEA(Q|L)4 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)4 [c+d] {s} x y)
953 (LEA(Q|L)4 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEA(Q|L)4 [c+4*d] {s} x y)
954 (LEA(Q|L)8 [c] {s} (ADD(Q|L)const [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEA(Q|L)8 [c+d] {s} x y)
955 (LEA(Q|L)8 [c] {s} x (ADD(Q|L)const [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEA(Q|L)8 [c+8*d] {s} x y)
956
957 // fold shifts into LEAQx/LEALx
958 (LEA(Q|L)1 [c] {s} x (ADD(Q|L) y y)) => (LEA(Q|L)2 [c] {s} x y)
959 (LEA(Q|L)1 [c] {s} x (SHL(Q|L)const [2] y)) => (LEA(Q|L)4 [c] {s} x y)
960 (LEA(Q|L)1 [c] {s} x (SHL(Q|L)const [3] y)) => (LEA(Q|L)8 [c] {s} x y)
961 (LEA(Q|L)2 [c] {s} x (ADD(Q|L) y y)) => (LEA(Q|L)4 [c] {s} x y)
962 (LEA(Q|L)2 [c] {s} x (SHL(Q|L)const [2] y)) => (LEA(Q|L)8 [c] {s} x y)
963 (LEA(Q|L)4 [c] {s} x (ADD(Q|L) y y)) => (LEA(Q|L)8 [c] {s} x y)
964
965 // (x + x) << 1 -> x << 2
966 (LEA(Q|L)2 [0] {s} (ADD(Q|L) x x) x) && s == nil => (SHL(Q|L)const [2] x)
967
968 // (x + x) << 2 -> x << 3 and similar
969 (SHL(Q|L)const [c] (ADD(Q|L) x x)) => (SHL(Q|L)const [c+1] x)
970
971 // reverse ordering of compare instruction
972 (SETL (InvertFlags x)) => (SETG x)
973 (SETG (InvertFlags x)) => (SETL x)
974 (SETB (InvertFlags x)) => (SETA x)
975 (SETA (InvertFlags x)) => (SETB x)
976 (SETLE (InvertFlags x)) => (SETGE x)
977 (SETGE (InvertFlags x)) => (SETLE x)
978 (SETBE (InvertFlags x)) => (SETAE x)
979 (SETAE (InvertFlags x)) => (SETBE x)
980 (SETEQ (InvertFlags x)) => (SETEQ x)
981 (SETNE (InvertFlags x)) => (SETNE x)
982
983 (SETLstore [off] {sym} ptr (InvertFlags x) mem) => (SETGstore [off] {sym} ptr x mem)
984 (SETGstore [off] {sym} ptr (InvertFlags x) mem) => (SETLstore [off] {sym} ptr x mem)
985 (SETBstore [off] {sym} ptr (InvertFlags x) mem) => (SETAstore [off] {sym} ptr x mem)
986 (SETAstore [off] {sym} ptr (InvertFlags x) mem) => (SETBstore [off] {sym} ptr x mem)
987 (SETLEstore [off] {sym} ptr (InvertFlags x) mem) => (SETGEstore [off] {sym} ptr x mem)
988 (SETGEstore [off] {sym} ptr (InvertFlags x) mem) => (SETLEstore [off] {sym} ptr x mem)
989 (SETBEstore [off] {sym} ptr (InvertFlags x) mem) => (SETAEstore [off] {sym} ptr x mem)
990 (SETAEstore [off] {sym} ptr (InvertFlags x) mem) => (SETBEstore [off] {sym} ptr x mem)
991 (SETEQstore [off] {sym} ptr (InvertFlags x) mem) => (SETEQstore [off] {sym} ptr x mem)
992 (SETNEstore [off] {sym} ptr (InvertFlags x) mem) => (SETNEstore [off] {sym} ptr x mem)
993
994 // sign extended loads
995 // Note: The combined instruction must end up in the same block
996 // as the original load. If not, we end up making a value with
997 // memory type live in two different blocks, which can lead to
998 // multiple memory values alive simultaneously.
999 // Make sure we don't combine these ops if the load has another use.
1000 // This prevents a single load from being split into multiple loads
1001 // which then might return different values. See test/atomicload.go.
1002 (MOVBQSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
1003 (MOVBQSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
1004 (MOVBQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
1005 (MOVBQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBQSXload <v.Type> [off] {sym} ptr mem)
1006 (MOVBQZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
1007 (MOVBQZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
1008 (MOVBQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
1009 (MOVBQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
1010 (MOVWQSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
1011 (MOVWQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
1012 (MOVWQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWQSXload <v.Type> [off] {sym} ptr mem)
1013 (MOVWQZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
1014 (MOVWQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
1015 (MOVWQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
1016 (MOVLQSX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLQSXload <v.Type> [off] {sym} ptr mem)
1017 (MOVLQSX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLQSXload <v.Type> [off] {sym} ptr mem)
1018 (MOVLQZX x:(MOVLload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLload <v.Type> [off] {sym} ptr mem)
1019 (MOVLQZX x:(MOVQload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVLload <v.Type> [off] {sym} ptr mem)
1020
1021 // replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
1022 (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBQZX x)
1023 (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWQZX x)
1024 (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVLQZX x)
1025 (MOVQload [off] {sym} ptr (MOVQstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x
1026 (MOVBQSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBQSX x)
1027 (MOVWQSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWQSX x)
1028 (MOVLQSXload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVLQSX x)
1029
1030 // Fold extensions and ANDs together.
1031 (MOVBQZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x)
1032 (MOVWQZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x)
1033 (MOVLQZX (ANDLconst [c] x)) => (ANDLconst [c] x)
1034 (MOVBQSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x)
1035 (MOVWQSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x)
1036 (MOVLQSX (ANDLconst [c] x)) && uint32(c) & 0x80000000 == 0 => (ANDLconst [c & 0x7fffffff] x)
1037
1038 // Don't extend before storing
1039 (MOVLstore [off] {sym} ptr (MOVLQSX x) mem) => (MOVLstore [off] {sym} ptr x mem)
1040 (MOVWstore [off] {sym} ptr (MOVWQSX x) mem) => (MOVWstore [off] {sym} ptr x mem)
1041 (MOVBstore [off] {sym} ptr (MOVBQSX x) mem) => (MOVBstore [off] {sym} ptr x mem)
1042 (MOVLstore [off] {sym} ptr (MOVLQZX x) mem) => (MOVLstore [off] {sym} ptr x mem)
1043 (MOVWstore [off] {sym} ptr (MOVWQZX x) mem) => (MOVWstore [off] {sym} ptr x mem)
1044 (MOVBstore [off] {sym} ptr (MOVBQZX x) mem) => (MOVBstore [off] {sym} ptr x mem)
1045
1046 // fold constants into memory operations
1047 // Note that this is not always a good idea because if not all the uses of
1048 // the ADDQconst get eliminated, we still have to compute the ADDQconst and we now
1049 // have potentially two live values (ptr and (ADDQconst [off] ptr)) instead of one.
1050 // Nevertheless, let's do it!
1051 (MOV(Q|L|W|B|SS|SD|O)load [off1] {sym} (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1052 (MOV(Q|L|W|B|SS|SD|O)load [off1+off2] {sym} ptr mem)
1053 (MOV(Q|L|W|B|SS|SD|O)store [off1] {sym} (ADDQconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) =>
1054 (MOV(Q|L|W|B|SS|SD|O)store [off1+off2] {sym} ptr val mem)
1055 (SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
1056 (SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1+off2] {sym} base val mem)
1057 ((ADD|SUB|AND|OR|XOR)Qload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
1058 ((ADD|SUB|AND|OR|XOR)Qload [off1+off2] {sym} val base mem)
1059 ((ADD|SUB|AND|OR|XOR)Lload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
1060 ((ADD|SUB|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
1061 (CMP(Q|L|W|B)load [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
1062 (CMP(Q|L|W|B)load [off1+off2] {sym} base val mem)
1063 (CMP(Q|L|W|B)constload [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
1064 (CMP(Q|L|W|B)constload [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
1065
1066 ((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
1067 ((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
1068 ((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDQconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
1069 ((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
1070 ((ADD|AND|OR|XOR)Qconstmodify [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
1071 ((ADD|AND|OR|XOR)Qconstmodify [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
1072 ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDQconst [off2] base) mem) && ValAndOff(valoff1).canAdd32(off2) =>
1073 ((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).addOffset32(off2)] {sym} base mem)
1074 ((ADD|SUB|AND|OR|XOR)Qmodify [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
1075 ((ADD|SUB|AND|OR|XOR)Qmodify [off1+off2] {sym} base val mem)
1076 ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDQconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
1077 ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
1078
1079 // Fold constants into stores.
1080 (MOVQstore [off] {sym} ptr (MOVQconst [c]) mem) && validVal(c) =>
1081 (MOVQstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem)
1082 (MOVLstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
1083 (MOVLstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem)
1084 (MOVWstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
1085 (MOVWstoreconst [makeValAndOff(int32(int16(c)),off)] {sym} ptr mem)
1086 (MOVBstore [off] {sym} ptr (MOV(L|Q)const [c]) mem) =>
1087 (MOVBstoreconst [makeValAndOff(int32(int8(c)),off)] {sym} ptr mem)
1088
1089 // Fold address offsets into constant stores.
1090 (MOV(Q|L|W|B|O)storeconst [sc] {s} (ADDQconst [off] ptr) mem) && ValAndOff(sc).canAdd32(off) =>
1091 (MOV(Q|L|W|B|O)storeconst [ValAndOff(sc).addOffset32(off)] {s} ptr mem)
1092
1093 // We need to fold LEAQ into the MOVx ops so that the live variable analysis knows
1094 // what variables are being read/written by the ops.
1095 (MOV(Q|L|W|B|SS|SD|O|BQSX|WQSX|LQSX)load [off1] {sym1} (LEAQ [off2] {sym2} base) mem)
1096 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1097 (MOV(Q|L|W|B|SS|SD|O|BQSX|WQSX|LQSX)load [off1+off2] {mergeSym(sym1,sym2)} base mem)
1098 (MOV(Q|L|W|B|SS|SD|O)store [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
1099 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1100 (MOV(Q|L|W|B|SS|SD|O)store [off1+off2] {mergeSym(sym1,sym2)} base val mem)
1101 (MOV(Q|L|W|B|O)storeconst [sc] {sym1} (LEAQ [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd32(off) =>
1102 (MOV(Q|L|W|B|O)storeconst [ValAndOff(sc).addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem)
1103 (SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
1104 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1105 (SET(L|G|B|A|LE|GE|BE|AE|EQ|NE)store [off1+off2] {mergeSym(sym1,sym2)} base val mem)
1106 ((ADD|SUB|AND|OR|XOR)Qload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
1107 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1108 ((ADD|SUB|AND|OR|XOR)Qload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
1109 ((ADD|SUB|AND|OR|XOR)Lload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
1110 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1111 ((ADD|SUB|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
1112 (CMP(Q|L|W|B)load [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
1113 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1114 (CMP(Q|L|W|B)load [off1+off2] {mergeSym(sym1,sym2)} base val mem)
1115 (CMP(Q|L|W|B)constload [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
1116 && ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
1117 (CMP(Q|L|W|B)constload [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
1118
1119 ((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
1120 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1121 ((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
1122 ((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAQ [off2] {sym2} base) mem)
1123 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1124 ((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
1125 ((ADD|AND|OR|XOR)Qconstmodify [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
1126 && ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
1127 ((ADD|AND|OR|XOR)Qconstmodify [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
1128 ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAQ [off2] {sym2} base) mem)
1129 && ValAndOff(valoff1).canAdd32(off2) && canMergeSym(sym1, sym2) =>
1130 ((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
1131 ((ADD|SUB|AND|OR|XOR)Qmodify [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
1132 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1133 ((ADD|SUB|AND|OR|XOR)Qmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
1134 ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAQ [off2] {sym2} base) val mem)
1135 && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1136 ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
1137
1138 // fold LEAQs together
1139 (LEAQ [off1] {sym1} (LEAQ [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1140 (LEAQ [off1+off2] {mergeSym(sym1,sym2)} x)
1141
1142 // LEAQ into LEAQ1
1143 (LEAQ1 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
1144 (LEAQ1 [off1+off2] {mergeSym(sym1,sym2)} x y)
1145
1146 // LEAQ1 into LEAQ
1147 (LEAQ [off1] {sym1} (LEAQ1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1148 (LEAQ1 [off1+off2] {mergeSym(sym1,sym2)} x y)
1149
1150 // LEAQ into LEAQ[248]
1151 (LEAQ2 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
1152 (LEAQ2 [off1+off2] {mergeSym(sym1,sym2)} x y)
1153 (LEAQ4 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
1154 (LEAQ4 [off1+off2] {mergeSym(sym1,sym2)} x y)
1155 (LEAQ8 [off1] {sym1} (LEAQ [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
1156 (LEAQ8 [off1+off2] {mergeSym(sym1,sym2)} x y)
1157
1158 // LEAQ[248] into LEAQ
1159 (LEAQ [off1] {sym1} (LEAQ2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1160 (LEAQ2 [off1+off2] {mergeSym(sym1,sym2)} x y)
1161 (LEAQ [off1] {sym1} (LEAQ4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1162 (LEAQ4 [off1+off2] {mergeSym(sym1,sym2)} x y)
1163 (LEAQ [off1] {sym1} (LEAQ8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1164 (LEAQ8 [off1+off2] {mergeSym(sym1,sym2)} x y)
1165
1166 // LEAQ[1248] into LEAQ[1248]. Only some such merges are possible.
1167 (LEAQ1 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1168 (LEAQ2 [off1+off2] {mergeSym(sym1, sym2)} x y)
1169 (LEAQ1 [off1] {sym1} x (LEAQ1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1170 (LEAQ2 [off1+off2] {mergeSym(sym1, sym2)} y x)
1171 (LEAQ2 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+2*int64(off2)) && sym2 == nil =>
1172 (LEAQ4 [off1+2*off2] {sym1} x y)
1173 (LEAQ4 [off1] {sym1} x (LEAQ1 [off2] {sym2} y y)) && is32Bit(int64(off1)+4*int64(off2)) && sym2 == nil =>
1174 (LEAQ8 [off1+4*off2] {sym1} x y)
1175 // TODO: more?
1176
1177 // Lower LEAQ2/4/8 when the offset is a constant
1178 (LEAQ2 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*2) =>
1179 (LEAQ [off+int32(scale)*2] {sym} x)
1180 (LEAQ4 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*4) =>
1181 (LEAQ [off+int32(scale)*4] {sym} x)
1182 (LEAQ8 [off] {sym} x (MOV(Q|L)const [scale])) && is32Bit(int64(off)+int64(scale)*8) =>
1183 (LEAQ [off+int32(scale)*8] {sym} x)
1184
1185 // Absorb InvertFlags into branches.
1186 (LT (InvertFlags cmp) yes no) => (GT cmp yes no)
1187 (GT (InvertFlags cmp) yes no) => (LT cmp yes no)
1188 (LE (InvertFlags cmp) yes no) => (GE cmp yes no)
1189 (GE (InvertFlags cmp) yes no) => (LE cmp yes no)
1190 (ULT (InvertFlags cmp) yes no) => (UGT cmp yes no)
1191 (UGT (InvertFlags cmp) yes no) => (ULT cmp yes no)
1192 (ULE (InvertFlags cmp) yes no) => (UGE cmp yes no)
1193 (UGE (InvertFlags cmp) yes no) => (ULE cmp yes no)
1194 (EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
1195 (NE (InvertFlags cmp) yes no) => (NE cmp yes no)
1196
1197 // Constant comparisons.
1198 (CMPQconst (MOVQconst [x]) [y]) && x==int64(y) => (FlagEQ)
1199 (CMPQconst (MOVQconst [x]) [y]) && x<int64(y) && uint64(x)<uint64(int64(y)) => (FlagLT_ULT)
1200 (CMPQconst (MOVQconst [x]) [y]) && x<int64(y) && uint64(x)>uint64(int64(y)) => (FlagLT_UGT)
1201 (CMPQconst (MOVQconst [x]) [y]) && x>int64(y) && uint64(x)<uint64(int64(y)) => (FlagGT_ULT)
1202 (CMPQconst (MOVQconst [x]) [y]) && x>int64(y) && uint64(x)>uint64(int64(y)) => (FlagGT_UGT)
1203 (CMPLconst (MOVLconst [x]) [y]) && x==y => (FlagEQ)
1204 (CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT)
1205 (CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT)
1206 (CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT)
1207 (CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT)
1208 (CMPWconst (MOVLconst [x]) [y]) && int16(x)==y => (FlagEQ)
1209 (CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT)
1210 (CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT)
1211 (CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT)
1212 (CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT)
1213 (CMPBconst (MOVLconst [x]) [y]) && int8(x)==y => (FlagEQ)
1214 (CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT)
1215 (CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT)
1216 (CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT)
1217 (CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT)
1218
1219 // CMPQconst requires a 32 bit const, but we can still constant-fold 64 bit consts.
1220 // In theory this applies to any of the simplifications above,
1221 // but CMPQ is the only one I've actually seen occur.
1222 (CMPQ (MOVQconst [x]) (MOVQconst [y])) && x==y => (FlagEQ)
1223 (CMPQ (MOVQconst [x]) (MOVQconst [y])) && x<y && uint64(x)<uint64(y) => (FlagLT_ULT)
1224 (CMPQ (MOVQconst [x]) (MOVQconst [y])) && x<y && uint64(x)>uint64(y) => (FlagLT_UGT)
1225 (CMPQ (MOVQconst [x]) (MOVQconst [y])) && x>y && uint64(x)<uint64(y) => (FlagGT_ULT)
1226 (CMPQ (MOVQconst [x]) (MOVQconst [y])) && x>y && uint64(x)>uint64(y) => (FlagGT_UGT)
1227
1228 // Other known comparisons.
1229 (CMPQconst (MOVBQZX _) [c]) && 0xFF < c => (FlagLT_ULT)
1230 (CMPQconst (MOVWQZX _) [c]) && 0xFFFF < c => (FlagLT_ULT)
1231 (CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT)
1232 (CMPQconst (SHRQconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 64 && (1<<uint64(64-c)) <= uint64(n) => (FlagLT_ULT)
1233 (CMPQconst (ANDQconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
1234 (CMPQconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
1235 (CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
1236 (CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT)
1237 (CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT)
1238
1239 // TESTQ c c sets flags like CMPQ c 0.
1240 (TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c == 0 => (FlagEQ)
1241 (TESTLconst [c] (MOVLconst [c])) && c == 0 => (FlagEQ)
1242 (TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c < 0 => (FlagLT_UGT)
1243 (TESTLconst [c] (MOVLconst [c])) && c < 0 => (FlagLT_UGT)
1244 (TESTQconst [c] (MOVQconst [d])) && int64(c) == d && c > 0 => (FlagGT_UGT)
1245 (TESTLconst [c] (MOVLconst [c])) && c > 0 => (FlagGT_UGT)
1246
1247 // TODO: DIVxU also.
1248
1249 // Absorb flag constants into SBB ops.
1250 (SBBQcarrymask (FlagEQ)) => (MOVQconst [0])
1251 (SBBQcarrymask (FlagLT_ULT)) => (MOVQconst [-1])
1252 (SBBQcarrymask (FlagLT_UGT)) => (MOVQconst [0])
1253 (SBBQcarrymask (FlagGT_ULT)) => (MOVQconst [-1])
1254 (SBBQcarrymask (FlagGT_UGT)) => (MOVQconst [0])
1255 (SBBLcarrymask (FlagEQ)) => (MOVLconst [0])
1256 (SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1])
1257 (SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0])
1258 (SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1])
1259 (SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0])
1260
1261 // Absorb flag constants into branches.
1262 ((EQ|LE|GE|ULE|UGE) (FlagEQ) yes no) => (First yes no)
1263 ((NE|LT|GT|ULT|UGT) (FlagEQ) yes no) => (First no yes)
1264 ((NE|LT|LE|ULT|ULE) (FlagLT_ULT) yes no) => (First yes no)
1265 ((EQ|GT|GE|UGT|UGE) (FlagLT_ULT) yes no) => (First no yes)
1266 ((NE|LT|LE|UGT|UGE) (FlagLT_UGT) yes no) => (First yes no)
1267 ((EQ|GT|GE|ULT|ULE) (FlagLT_UGT) yes no) => (First no yes)
1268 ((NE|GT|GE|ULT|ULE) (FlagGT_ULT) yes no) => (First yes no)
1269 ((EQ|LT|LE|UGT|UGE) (FlagGT_ULT) yes no) => (First no yes)
1270 ((NE|GT|GE|UGT|UGE) (FlagGT_UGT) yes no) => (First yes no)
1271 ((EQ|LT|LE|ULT|ULE) (FlagGT_UGT) yes no) => (First no yes)
1272
1273 // Absorb flag constants into SETxx ops.
1274 ((SETEQ|SETLE|SETGE|SETBE|SETAE) (FlagEQ)) => (MOVLconst [1])
1275 ((SETNE|SETL|SETG|SETB|SETA) (FlagEQ)) => (MOVLconst [0])
1276 ((SETNE|SETL|SETLE|SETB|SETBE) (FlagLT_ULT)) => (MOVLconst [1])
1277 ((SETEQ|SETG|SETGE|SETA|SETAE) (FlagLT_ULT)) => (MOVLconst [0])
1278 ((SETNE|SETL|SETLE|SETA|SETAE) (FlagLT_UGT)) => (MOVLconst [1])
1279 ((SETEQ|SETG|SETGE|SETB|SETBE) (FlagLT_UGT)) => (MOVLconst [0])
1280 ((SETNE|SETG|SETGE|SETB|SETBE) (FlagGT_ULT)) => (MOVLconst [1])
1281 ((SETEQ|SETL|SETLE|SETA|SETAE) (FlagGT_ULT)) => (MOVLconst [0])
1282 ((SETNE|SETG|SETGE|SETA|SETAE) (FlagGT_UGT)) => (MOVLconst [1])
1283 ((SETEQ|SETL|SETLE|SETB|SETBE) (FlagGT_UGT)) => (MOVLconst [0])
1284
1285 (SETEQstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1286 (SETEQstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1287 (SETEQstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1288 (SETEQstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1289 (SETEQstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1290
1291 (SETNEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1292 (SETNEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1293 (SETNEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1294 (SETNEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1295 (SETNEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1296
1297 (SETLstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1298 (SETLstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1299 (SETLstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1300 (SETLstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1301 (SETLstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1302
1303 (SETLEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1304 (SETLEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1305 (SETLEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1306 (SETLEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1307 (SETLEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1308
1309 (SETGstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1310 (SETGstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1311 (SETGstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1312 (SETGstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1313 (SETGstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1314
1315 (SETGEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1316 (SETGEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1317 (SETGEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1318 (SETGEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1319 (SETGEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1320
1321 (SETBstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1322 (SETBstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1323 (SETBstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1324 (SETBstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1325 (SETBstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1326
1327 (SETBEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1328 (SETBEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1329 (SETBEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1330 (SETBEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1331 (SETBEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1332
1333 (SETAstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1334 (SETAstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1335 (SETAstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1336 (SETAstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1337 (SETAstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1338
1339 (SETAEstore [off] {sym} ptr (FlagEQ) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1340 (SETAEstore [off] {sym} ptr (FlagLT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1341 (SETAEstore [off] {sym} ptr (FlagLT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1342 (SETAEstore [off] {sym} ptr (FlagGT_ULT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [0]) mem)
1343 (SETAEstore [off] {sym} ptr (FlagGT_UGT) mem) => (MOVBstore [off] {sym} ptr (MOVLconst <typ.UInt8> [1]) mem)
1344
1345 // Remove redundant *const ops
1346 (ADDQconst [0] x) => x
1347 (ADDLconst [c] x) && c==0 => x
1348 (SUBQconst [0] x) => x
1349 (SUBLconst [c] x) && c==0 => x
1350 (ANDQconst [0] _) => (MOVQconst [0])
1351 (ANDLconst [c] _) && c==0 => (MOVLconst [0])
1352 (ANDQconst [-1] x) => x
1353 (ANDLconst [c] x) && c==-1 => x
1354 (ORQconst [0] x) => x
1355 (ORLconst [c] x) && c==0 => x
1356 (ORQconst [-1] _) => (MOVQconst [-1])
1357 (ORLconst [c] _) && c==-1 => (MOVLconst [-1])
1358 (XORQconst [0] x) => x
1359 (XORLconst [c] x) && c==0 => x
1360 // TODO: since we got rid of the W/B versions, we might miss
1361 // things like (ANDLconst [0x100] x) which were formerly
1362 // (ANDBconst [0] x). Probably doesn't happen very often.
1363 // If we cared, we might do:
1364 // (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 -> (MOVLconst [0])
1365
1366 // Remove redundant ops
1367 // Not in generic rules, because they may appear after lowering e. g. Slicemask
1368 (NEG(Q|L) (NEG(Q|L) x)) => x
1369 (NEG(Q|L) s:(SUB(Q|L) x y)) && s.Uses == 1 => (SUB(Q|L) y x)
1370
1371 // Convert constant subtracts to constant adds
1372 (SUBQconst [c] x) && c != -(1<<31) => (ADDQconst [-c] x)
1373 (SUBLconst [c] x) => (ADDLconst [-c] x)
1374
1375 // generic constant folding
1376 // TODO: more of this
1377 (ADDQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)+d])
1378 (ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d])
1379 (ADDQconst [c] (ADDQconst [d] x)) && is32Bit(int64(c)+int64(d)) => (ADDQconst [c+d] x)
1380 (ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x)
1381 (SUBQconst (MOVQconst [d]) [c]) => (MOVQconst [d-int64(c)])
1382 (SUBQconst (SUBQconst x [d]) [c]) && is32Bit(int64(-c)-int64(d)) => (ADDQconst [-c-d] x)
1383 (SARQconst [c] (MOVQconst [d])) => (MOVQconst [d>>uint64(c)])
1384 (SARLconst [c] (MOVQconst [d])) => (MOVQconst [int64(int32(d))>>uint64(c)])
1385 (SARWconst [c] (MOVQconst [d])) => (MOVQconst [int64(int16(d))>>uint64(c)])
1386 (SARBconst [c] (MOVQconst [d])) => (MOVQconst [int64(int8(d))>>uint64(c)])
1387 (NEGQ (MOVQconst [c])) => (MOVQconst [-c])
1388 (NEGL (MOVLconst [c])) => (MOVLconst [-c])
1389 (MULQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)*d])
1390 (MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d])
1391 (ANDQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)&d])
1392 (ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d])
1393 (ORQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)|d])
1394 (ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d])
1395 (XORQconst [c] (MOVQconst [d])) => (MOVQconst [int64(c)^d])
1396 (XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d])
1397 (NOTQ (MOVQconst [c])) => (MOVQconst [^c])
1398 (NOTL (MOVLconst [c])) => (MOVLconst [^c])
1399 (BTSQconst [c] (MOVQconst [d])) => (MOVQconst [d|(1<<uint32(c))])
1400 (BTRQconst [c] (MOVQconst [d])) => (MOVQconst [d&^(1<<uint32(c))])
1401 (BTCQconst [c] (MOVQconst [d])) => (MOVQconst [d^(1<<uint32(c))])
1402
1403 // If c or d doesn't fit into 32 bits, then we can't construct ORQconst,
1404 // but we can still constant-fold.
1405 // In theory this applies to any of the simplifications above,
1406 // but ORQ is the only one I've actually seen occur.
1407 (ORQ (MOVQconst [c]) (MOVQconst [d])) => (MOVQconst [c|d])
1408
1409 // generic simplifications
1410 // TODO: more of this
1411 (ADDQ x (NEGQ y)) => (SUBQ x y)
1412 (ADDL x (NEGL y)) => (SUBL x y)
1413 (SUBQ x x) => (MOVQconst [0])
1414 (SUBL x x) => (MOVLconst [0])
1415 (ANDQ x x) => x
1416 (ANDL x x) => x
1417 (ORQ x x) => x
1418 (ORL x x) => x
1419 (XORQ x x) => (MOVQconst [0])
1420 (XORL x x) => (MOVLconst [0])
1421
1422 (SHLLconst [d] (MOVLconst [c])) => (MOVLconst [c << uint64(d)])
1423 (SHLQconst [d] (MOVQconst [c])) => (MOVQconst [c << uint64(d)])
1424 (SHLQconst [d] (MOVLconst [c])) => (MOVQconst [int64(c) << uint64(d)])
1425
1426 // Fold NEG into ADDconst/MULconst. Take care to keep c in 32 bit range.
1427 (NEGQ (ADDQconst [c] (NEGQ x))) && c != -(1<<31) => (ADDQconst [-c] x)
1428 (MULQconst [c] (NEGQ x)) && c != -(1<<31) => (MULQconst [-c] x)
1429
1430 // checking AND against 0.
1431 (CMPQconst a:(ANDQ x y) [0]) && a.Uses == 1 => (TESTQ x y)
1432 (CMPLconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTL x y)
1433 (CMPWconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTW x y)
1434 (CMPBconst a:(ANDL x y) [0]) && a.Uses == 1 => (TESTB x y)
1435 (CMPQconst a:(ANDQconst [c] x) [0]) && a.Uses == 1 => (TESTQconst [c] x)
1436 (CMPLconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTLconst [c] x)
1437 (CMPWconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTWconst [int16(c)] x)
1438 (CMPBconst a:(ANDLconst [c] x) [0]) && a.Uses == 1 => (TESTBconst [int8(c)] x)
1439
1440 // Convert TESTx to TESTxconst if possible.
1441 (TESTQ (MOVQconst [c]) x) && is32Bit(c) => (TESTQconst [int32(c)] x)
1442 (TESTL (MOVLconst [c]) x) => (TESTLconst [c] x)
1443 (TESTW (MOVLconst [c]) x) => (TESTWconst [int16(c)] x)
1444 (TESTB (MOVLconst [c]) x) => (TESTBconst [int8(c)] x)
1445
1446 // TEST %reg,%reg is shorter than CMP
1447 (CMPQconst x [0]) => (TESTQ x x)
1448 (CMPLconst x [0]) => (TESTL x x)
1449 (CMPWconst x [0]) => (TESTW x x)
1450 (CMPBconst x [0]) => (TESTB x x)
1451 (TESTQconst [-1] x) && x.Op != OpAMD64MOVQconst => (TESTQ x x)
1452 (TESTLconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTL x x)
1453 (TESTWconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTW x x)
1454 (TESTBconst [-1] x) && x.Op != OpAMD64MOVLconst => (TESTB x x)
1455
1456 // Convert LEAQ1 back to ADDQ if we can
1457 (LEAQ1 [0] x y) && v.Aux == nil => (ADDQ x y)
1458
1459 (MOVQstoreconst [c] {s} p1 x:(MOVQstoreconst [a] {s} p0 mem))
1460 && x.Uses == 1
1461 && sequentialAddresses(p0, p1, int64(a.Off()+8-c.Off()))
1462 && a.Val() == 0
1463 && c.Val() == 0
1464 && setPos(v, x.Pos)
1465 && clobber(x)
1466 => (MOVOstoreconst [makeValAndOff(0,a.Off())] {s} p0 mem)
1467 (MOVQstoreconst [a] {s} p0 x:(MOVQstoreconst [c] {s} p1 mem))
1468 && x.Uses == 1
1469 && sequentialAddresses(p0, p1, int64(a.Off()+8-c.Off()))
1470 && a.Val() == 0
1471 && c.Val() == 0
1472 && setPos(v, x.Pos)
1473 && clobber(x)
1474 => (MOVOstoreconst [makeValAndOff(0,a.Off())] {s} p0 mem)
1475
1476 // Merge load and op
1477 // TODO: add indexed variants?
1478 ((ADD|SUB|AND|OR|XOR)Q x l:(MOVQload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|AND|OR|XOR)Qload x [off] {sym} ptr mem)
1479 ((ADD|SUB|AND|OR|XOR)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|AND|OR|XOR)Lload x [off] {sym} ptr mem)
1480 ((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
1481 ((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
1482 (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
1483 (MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
1484 ((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
1485 (MOVQstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Qload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Qmodify [off] {sym} ptr x mem)
1486 (MOVQstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)Q l:(MOVQload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
1487 ((ADD|SUB|AND|OR|XOR)Qmodify [off] {sym} ptr x mem)
1488 (MOVQstore {sym} [off] ptr x:(BT(S|R|C)Qconst [c] l:(MOVQload {sym} [off] ptr mem)) mem) && x.Uses == 1 && l.Uses == 1 && clobber(x, l) =>
1489 (BT(S|R|C)Qconstmodify {sym} [makeValAndOff(int32(c),off)] ptr mem)
1490
1491 // Merge ADDQconst and LEAQ into atomic loads.
1492 (MOV(Q|L|B)atomicload [off1] {sym} (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1493 (MOV(Q|L|B)atomicload [off1+off2] {sym} ptr mem)
1494 (MOV(Q|L|B)atomicload [off1] {sym1} (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
1495 (MOV(Q|L|B)atomicload [off1+off2] {mergeSym(sym1, sym2)} ptr mem)
1496
1497 // Merge ADDQconst and LEAQ into atomic stores.
1498 (XCHGQ [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1499 (XCHGQ [off1+off2] {sym} val ptr mem)
1500 (XCHGQ [off1] {sym1} val (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && ptr.Op != OpSB =>
1501 (XCHGQ [off1+off2] {mergeSym(sym1,sym2)} val ptr mem)
1502 (XCHGL [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1503 (XCHGL [off1+off2] {sym} val ptr mem)
1504 (XCHGL [off1] {sym1} val (LEAQ [off2] {sym2} ptr) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && ptr.Op != OpSB =>
1505 (XCHGL [off1+off2] {mergeSym(sym1,sym2)} val ptr mem)
1506
1507 // Merge ADDQconst into atomic adds.
1508 // TODO: merging LEAQ doesn't work, assembler doesn't like the resulting instructions.
1509 (XADDQlock [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1510 (XADDQlock [off1+off2] {sym} val ptr mem)
1511 (XADDLlock [off1] {sym} val (ADDQconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
1512 (XADDLlock [off1+off2] {sym} val ptr mem)
1513
1514 // Merge ADDQconst into atomic compare and swaps.
1515 // TODO: merging LEAQ doesn't work, assembler doesn't like the resulting instructions.
1516 (CMPXCHGQlock [off1] {sym} (ADDQconst [off2] ptr) old new_ mem) && is32Bit(int64(off1)+int64(off2)) =>
1517 (CMPXCHGQlock [off1+off2] {sym} ptr old new_ mem)
1518 (CMPXCHGLlock [off1] {sym} (ADDQconst [off2] ptr) old new_ mem) && is32Bit(int64(off1)+int64(off2)) =>
1519 (CMPXCHGLlock [off1+off2] {sym} ptr old new_ mem)
1520
1521 // We don't need the conditional move if we know the arg of BSF is not zero.
1522 (CMOVQEQ x _ (Select1 (BS(F|R)Q (ORQconst [c] _)))) && c != 0 => x
1523 // Extension is unnecessary for trailing zeros.
1524 (BSFQ (ORQconst <t> [1<<8] (MOVBQZX x))) => (BSFQ (ORQconst <t> [1<<8] x))
1525 (BSFQ (ORQconst <t> [1<<16] (MOVWQZX x))) => (BSFQ (ORQconst <t> [1<<16] x))
1526
1527 // Redundant sign/zero extensions
1528 // Note: see issue 21963. We have to make sure we use the right type on
1529 // the resulting extension (the outer type, not the inner type).
1530 (MOVLQSX (MOVLQSX x)) => (MOVLQSX x)
1531 (MOVLQSX (MOVWQSX x)) => (MOVWQSX x)
1532 (MOVLQSX (MOVBQSX x)) => (MOVBQSX x)
1533 (MOVWQSX (MOVWQSX x)) => (MOVWQSX x)
1534 (MOVWQSX (MOVBQSX x)) => (MOVBQSX x)
1535 (MOVBQSX (MOVBQSX x)) => (MOVBQSX x)
1536 (MOVLQZX (MOVLQZX x)) => (MOVLQZX x)
1537 (MOVLQZX (MOVWQZX x)) => (MOVWQZX x)
1538 (MOVLQZX (MOVBQZX x)) => (MOVBQZX x)
1539 (MOVWQZX (MOVWQZX x)) => (MOVWQZX x)
1540 (MOVWQZX (MOVBQZX x)) => (MOVBQZX x)
1541 (MOVBQZX (MOVBQZX x)) => (MOVBQZX x)
1542
1543 (MOVQstore [off] {sym} ptr a:((ADD|AND|OR|XOR)Qconst [c] l:(MOVQload [off] {sym} ptr2 mem)) mem)
1544 && isSamePtr(ptr, ptr2) && a.Uses == 1 && l.Uses == 1 && clobber(l, a) =>
1545 ((ADD|AND|OR|XOR)Qconstmodify {sym} [makeValAndOff(int32(c),off)] ptr mem)
1546 (MOVLstore [off] {sym} ptr a:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr2 mem)) mem)
1547 && isSamePtr(ptr, ptr2) && a.Uses == 1 && l.Uses == 1 && clobber(l, a) =>
1548 ((ADD|AND|OR|XOR)Lconstmodify {sym} [makeValAndOff(int32(c),off)] ptr mem)
1549
1550 // float <-> int register moves, with no conversion.
1551 // These come up when compiling math.{Float{32,64}bits,Float{32,64}frombits}.
1552 (MOVQload [off] {sym} ptr (MOVSDstore [off] {sym} ptr val _)) => (MOVQf2i val)
1553 (MOVLload [off] {sym} ptr (MOVSSstore [off] {sym} ptr val _)) => (MOVLf2i val)
1554 (MOVSDload [off] {sym} ptr (MOVQstore [off] {sym} ptr val _)) => (MOVQi2f val)
1555 (MOVSSload [off] {sym} ptr (MOVLstore [off] {sym} ptr val _)) => (MOVLi2f val)
1556
1557 // Other load-like ops.
1558 (ADDQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (ADDQ x (MOVQf2i y))
1559 (ADDLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (ADDL x (MOVLf2i y))
1560 (SUBQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (SUBQ x (MOVQf2i y))
1561 (SUBLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (SUBL x (MOVLf2i y))
1562 (ANDQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (ANDQ x (MOVQf2i y))
1563 (ANDLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (ANDL x (MOVLf2i y))
1564 ( ORQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => ( ORQ x (MOVQf2i y))
1565 ( ORLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => ( ORL x (MOVLf2i y))
1566 (XORQload x [off] {sym} ptr (MOVSDstore [off] {sym} ptr y _)) => (XORQ x (MOVQf2i y))
1567 (XORLload x [off] {sym} ptr (MOVSSstore [off] {sym} ptr y _)) => (XORL x (MOVLf2i y))
1568
1569 (ADDSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (ADDSD x (MOVQi2f y))
1570 (ADDSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (ADDSS x (MOVLi2f y))
1571 (SUBSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (SUBSD x (MOVQi2f y))
1572 (SUBSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (SUBSS x (MOVLi2f y))
1573 (MULSDload x [off] {sym} ptr (MOVQstore [off] {sym} ptr y _)) => (MULSD x (MOVQi2f y))
1574 (MULSSload x [off] {sym} ptr (MOVLstore [off] {sym} ptr y _)) => (MULSS x (MOVLi2f y))
1575
1576 // Detect FMA
1577 (ADDS(S|D) (MULS(S|D) x y) z) && buildcfg.GOAMD64 >= 3 && z.Block.Func.useFMA(v) => (VFMADD231S(S|D) z x y)
1578
1579 // Redirect stores to use the other register set.
1580 (MOVQstore [off] {sym} ptr (MOVQf2i val) mem) => (MOVSDstore [off] {sym} ptr val mem)
1581 (MOVLstore [off] {sym} ptr (MOVLf2i val) mem) => (MOVSSstore [off] {sym} ptr val mem)
1582 (MOVSDstore [off] {sym} ptr (MOVQi2f val) mem) => (MOVQstore [off] {sym} ptr val mem)
1583 (MOVSSstore [off] {sym} ptr (MOVLi2f val) mem) => (MOVLstore [off] {sym} ptr val mem)
1584
1585 (MOVSDstore [off] {sym} ptr (MOVSDconst [f]) mem) && f == f => (MOVQstore [off] {sym} ptr (MOVQconst [int64(math.Float64bits(f))]) mem)
1586 (MOVSSstore [off] {sym} ptr (MOVSSconst [f]) mem) && f == f => (MOVLstore [off] {sym} ptr (MOVLconst [int32(math.Float32bits(f))]) mem)
1587
1588 // Load args directly into the register class where it will be used.
1589 // We do this by just modifying the type of the Arg.
1590 (MOVQf2i <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
1591 (MOVLf2i <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
1592 (MOVQi2f <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
1593 (MOVLi2f <t> (Arg <u> [off] {sym})) && t.Size() == u.Size() => @b.Func.Entry (Arg <t> [off] {sym})
1594
1595 // LEAQ is rematerializeable, so this helps to avoid register spill.
1596 // See issue 22947 for details
1597 (ADD(Q|L)const [off] x:(SP)) => (LEA(Q|L) [off] x)
1598
1599 // HMULx is commutative, but its first argument must go in AX.
1600 // If possible, put a rematerializeable value in the first argument slot,
1601 // to reduce the odds that another value will be have to spilled
1602 // specifically to free up AX.
1603 (HMUL(Q|L) x y) && !x.rematerializeable() && y.rematerializeable() => (HMUL(Q|L) y x)
1604 (HMUL(Q|L)U x y) && !x.rematerializeable() && y.rematerializeable() => (HMUL(Q|L)U y x)
1605
1606 // Fold loads into compares
1607 // Note: these may be undone by the flagalloc pass.
1608 (CMP(Q|L|W|B) l:(MOV(Q|L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(Q|L|W|B)load {sym} [off] ptr x mem)
1609 (CMP(Q|L|W|B) x l:(MOV(Q|L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(Q|L|W|B)load {sym} [off] ptr x mem))
1610
1611 (CMP(Q|L)const l:(MOV(Q|L)load {sym} [off] ptr mem) [c])
1612 && l.Uses == 1
1613 && clobber(l) =>
1614 @l.Block (CMP(Q|L)constload {sym} [makeValAndOff(c,off)] ptr mem)
1615 (CMP(W|B)const l:(MOV(W|B)load {sym} [off] ptr mem) [c])
1616 && l.Uses == 1
1617 && clobber(l) =>
1618 @l.Block (CMP(W|B)constload {sym} [makeValAndOff(int32(c),off)] ptr mem)
1619
1620 (CMPQload {sym} [off] ptr (MOVQconst [c]) mem) && validVal(c) => (CMPQconstload {sym} [makeValAndOff(int32(c),off)] ptr mem)
1621 (CMPLload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPLconstload {sym} [makeValAndOff(c,off)] ptr mem)
1622 (CMPWload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem)
1623 (CMPBload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem)
1624
1625 (TEST(Q|L|W|B) l:(MOV(Q|L|W|B)load {sym} [off] ptr mem) l2)
1626 && l == l2
1627 && l.Uses == 2
1628 && clobber(l) =>
1629 @l.Block (CMP(Q|L|W|B)constload {sym} [makeValAndOff(0, off)] ptr mem)
1630
1631 // Convert ANDload to MOVload when we can do the AND in a containing TEST op.
1632 // Only do when it's within the same block, so we don't have flags live across basic block boundaries.
1633 // See issue 44228.
1634 (TEST(Q|L) a:(AND(Q|L)load [off] {sym} x ptr mem) a) && a.Uses == 2 && a.Block == v.Block && clobber(a) => (TEST(Q|L) (MOV(Q|L)load <a.Type> [off] {sym} ptr mem) x)
1635
1636 (MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))])
1637 (MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))])
1638 (MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))])
1639 (MOVQload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(read64(sym, int64(off), config.ctxt.Arch.ByteOrder))])
1640 (MOVBQSXload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(int8(read8(sym, int64(off))))])
1641 (MOVWQSXload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(int16(read16(sym, int64(off), config.ctxt.Arch.ByteOrder)))])
1642 (MOVLQSXload [off] {sym} (SB) _) && symIsRO(sym) => (MOVQconst [int64(int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder)))])
1643
1644
1645 (MOVOstore [dstOff] {dstSym} ptr (MOVOload [srcOff] {srcSym} (SB) _) mem) && symIsRO(srcSym) =>
1646 (MOVQstore [dstOff+8] {dstSym} ptr (MOVQconst [int64(read64(srcSym, int64(srcOff)+8, config.ctxt.Arch.ByteOrder))])
1647 (MOVQstore [dstOff] {dstSym} ptr (MOVQconst [int64(read64(srcSym, int64(srcOff), config.ctxt.Arch.ByteOrder))]) mem))
1648
1649 // Arch-specific inlining for small or disjoint runtime.memmove
1650 // Match post-lowering calls, memory version.
1651 (SelectN [0] call:(CALLstatic {sym} s1:(MOVQstoreconst _ [sc] s2:(MOVQstore _ src s3:(MOVQstore _ dst mem)))))
1652 && sc.Val64() >= 0
1653 && isSameCall(sym, "runtime.memmove")
1654 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1
1655 && isInlinableMemmove(dst, src, sc.Val64(), config)
1656 && clobber(s1, s2, s3, call)
1657 => (Move [sc.Val64()] dst src mem)
1658
1659 // Match post-lowering calls, register version.
1660 (SelectN [0] call:(CALLstatic {sym} dst src (MOVQconst [sz]) mem))
1661 && sz >= 0
1662 && isSameCall(sym, "runtime.memmove")
1663 && call.Uses == 1
1664 && isInlinableMemmove(dst, src, sz, config)
1665 && clobber(call)
1666 => (Move [sz] dst src mem)
1667
1668 // Prefetch instructions
1669 (PrefetchCache ...) => (PrefetchT0 ...)
1670 (PrefetchCacheStreamed ...) => (PrefetchNTA ...)
1671
1672 // CPUID feature: BMI1.
1673 (AND(Q|L) x (NOT(Q|L) y)) && buildcfg.GOAMD64 >= 3 => (ANDN(Q|L) x y)
1674 (AND(Q|L) x (NEG(Q|L) x)) && buildcfg.GOAMD64 >= 3 => (BLSI(Q|L) x)
1675 (XOR(Q|L) x (ADD(Q|L)const [-1] x)) && buildcfg.GOAMD64 >= 3 => (BLSMSK(Q|L) x)
1676 (AND(Q|L) <t> x (ADD(Q|L)const [-1] x)) && buildcfg.GOAMD64 >= 3 => (Select0 <t> (BLSR(Q|L) x))
1677 // eliminate TEST instruction in classical "isPowerOfTwo" check
1678 (SETEQ (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (SETEQ (Select1 <types.TypeFlags> blsr))
1679 (CMOVQEQ x y (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (CMOVQEQ x y (Select1 <types.TypeFlags> blsr))
1680 (CMOVLEQ x y (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (CMOVLEQ x y (Select1 <types.TypeFlags> blsr))
1681 (EQ (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s) yes no) => (EQ (Select1 <types.TypeFlags> blsr) yes no)
1682 (SETNE (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (SETNE (Select1 <types.TypeFlags> blsr))
1683 (CMOVQNE x y (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (CMOVQNE x y (Select1 <types.TypeFlags> blsr))
1684 (CMOVLNE x y (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s)) => (CMOVLNE x y (Select1 <types.TypeFlags> blsr))
1685 (NE (TEST(Q|L) s:(Select0 blsr:(BLSR(Q|L) _)) s) yes no) => (NE (Select1 <types.TypeFlags> blsr) yes no)
1686
1687 (BSWAP(Q|L) (BSWAP(Q|L) p)) => p
1688
1689 // CPUID feature: MOVBE.
1690 (MOV(Q|L)store [i] {s} p x:(BSWAP(Q|L) w) mem) && x.Uses == 1 && buildcfg.GOAMD64 >= 3 => (MOVBE(Q|L)store [i] {s} p w mem)
1691 (MOVBE(Q|L)store [i] {s} p x:(BSWAP(Q|L) w) mem) && x.Uses == 1 => (MOV(Q|L)store [i] {s} p w mem)
1692 (BSWAP(Q|L) x:(MOV(Q|L)load [i] {s} p mem)) && x.Uses == 1 && buildcfg.GOAMD64 >= 3 => @x.Block (MOVBE(Q|L)load [i] {s} p mem)
1693 (BSWAP(Q|L) x:(MOVBE(Q|L)load [i] {s} p mem)) && x.Uses == 1 => @x.Block (MOV(Q|L)load [i] {s} p mem)
1694 (MOVWstore [i] {s} p x:(ROLWconst [8] w) mem) && x.Uses == 1 && buildcfg.GOAMD64 >= 3 => (MOVBEWstore [i] {s} p w mem)
1695 (MOVBEWstore [i] {s} p x:(ROLWconst [8] w) mem) && x.Uses == 1 => (MOVWstore [i] {s} p w mem)
1696
1697 (SAR(Q|L) l:(MOV(Q|L)load [off] {sym} ptr mem) x) && buildcfg.GOAMD64 >= 3 && canMergeLoad(v, l) && clobber(l) => (SARX(Q|L)load [off] {sym} ptr x mem)
1698 (SHL(Q|L) l:(MOV(Q|L)load [off] {sym} ptr mem) x) && buildcfg.GOAMD64 >= 3 && canMergeLoad(v, l) && clobber(l) => (SHLX(Q|L)load [off] {sym} ptr x mem)
1699 (SHR(Q|L) l:(MOV(Q|L)load [off] {sym} ptr mem) x) && buildcfg.GOAMD64 >= 3 && canMergeLoad(v, l) && clobber(l) => (SHRX(Q|L)load [off] {sym} ptr x mem)
1700
1701 ((SHL|SHR|SAR)XQload [off] {sym} ptr (MOVQconst [c]) mem) => ((SHL|SHR|SAR)Qconst [int8(c&63)] (MOVQload [off] {sym} ptr mem))
1702 ((SHL|SHR|SAR)XQload [off] {sym} ptr (MOVLconst [c]) mem) => ((SHL|SHR|SAR)Qconst [int8(c&63)] (MOVQload [off] {sym} ptr mem))
1703 ((SHL|SHR|SAR)XLload [off] {sym} ptr (MOVLconst [c]) mem) => ((SHL|SHR|SAR)Lconst [int8(c&31)] (MOVLload [off] {sym} ptr mem))
1704
1705 // Convert atomic logical operations to easier ones if we don't use the result.
1706 (Select1 a:(LoweredAtomic(And64|And32|Or64|Or32) ptr val mem)) && a.Uses == 1 && clobber(a) => ((ANDQ|ANDL|ORQ|ORL)lock ptr val mem)
1707
View as plain text